Math 220 November 6 I. Evaluate the integral. 1. 2 Z (3 − 2x − 3x2 )dx 1 2. 3 Z e2 dx 0 3. Z 2 √ 1 + x−2/3 + 2 x + 3x5/2 dx 1 4. 4 Z √ (1 + 2t + 3t2 ) tdt 1 5. 1 Z t2 dx 0 6. π Z sec2 (x)dx 3π/4 7. 2 Z 1 x2 + 3x + 2 2x 8. 1 Z 0 9. 1 Z 0 10. Z dx 4 dx 1 + x2 4 + 2x2 dx 1 + x2 π/2 [2 cos(x) + sin(x)]dx 0 11. Z π/2 csc2 (x)dx π/4 12. Z π (2ex + cos(x))dx 0 1 13. π Z (2 sin(x) + sin(2x))dx 0 14. 3 Z 1 15. x 3 + 3 x dx 1 Z (x5 + 5x + e5x + x5e )dx 0 16. Z 0 1/2 x4 − 1 x3 + 3x2 + 9x + 27 + x2 − 1 x+3 17. Z 2 −1 dx 1 dx x3 II. Find the general indefinite integral. 1. Z 2. Z 3. 4. x2 + x−3 + x−1 + √ 5 x dx √ √ ( x + 1)( 3 x + x)dx Z sin(2x) dx cos(x) Z csc(x)(sin(x) − csc(x))dx 5. Z sin(θ) + sin(θ) csc2 (θ) dθ cot2 (x) III. Water flows from the bottom of a storage tank at a rate of r(t) = 600 − 3t2 liters per minute, where 0 ≤ t ≤ 50. If the tank initially held 3000 liters, how much water would be left in the tank after 5 minutes. 2 1 Solutions I. Evaluate the integral. 1. 2 Z (3 − 2x − 3x2 )dx 1 Answer: Z 2 (3 − 2x − 3x2 )dx = 3x − x2 − x3 i2 1 1 = (6 − 4 − 8) − (3 − 1 − 1) = (−6) − 1 = −7 2. Z 3 e2 dx 0 Answer: Z 3 e2 dx = e2 x i3 0 0 2 = 3e − 0 = 3e2 3. Z 2 √ 1 + x−2/3 + 2 x + 3x5/2 dx 1 Answer: Z 1 2 √ x1/3 x3/2 x7/2 i2 1 + x−2/3 + 2 x + 3x5/2 dx = x + +2 +3 1/3 3/2 7/2 1 i2 4 6 = x + 3x1/3 + x3/2 + x7/2 3 7 1 √ 4√ 12 √ 4 6 3 = (2 + 3 2 + 8+ 128) − (1 + 3 + + ) 3 7 3 7 √ 4√ 12 √ 4 6 3 = −2 + 3 2 + 8+ 128 − − 3 7 3 7 3 4. 1 Z t2 dx 0 Answer: 1 Z t2 dx = t2 x i1 0 0 2 =t 5. Z π sec2 (x)dx 3π/4 Answer: Z π iπ sec2 (x)dx = tan(x) 3π/4 3π/4 = tan(π) − tan(3π/4) = 0 − (−1) =1 6. Z 1 2 x2 + 3x + 2 2x dx Answer: Z 1 2 x2 + 3x + 2 2x 2 x 3 1 dx = + + dx 2 2 x 1 i2 x2 3 = + x + ln |x| 4 2 1 4 3 1 3 = ( + 2 + ln(2)) − ( + + ln(1)) 4 2 4 2 7 = (1 + 3 + ln(2)) − ( ) 4 7 = 4 + ln(2) − 4 9 = + ln(2) 4 Z 4 7. π/2 Z [2 cos(x) + sin(x)]dx 0 Answer: Z π/2 iπ/2 [2 cos(x) + sin(x)]dx = 2 sin(x) − cos(x) 0 0 = (2 sin(π/2) − cos(π/2)) − (2 sin(0) − cos(0)) = (2 − 0) − (0 − 1) =3 8. Z π/2 csc2 (x)dx π/4 Answer: Z π/2 2 csc (x)dx = − cot(x) iπ/2 π/4 π/4 = (− cot(π/2)) − (− cot(π/4)) = 0 − (−1) =1 9. Z π (2ex + cos(x))dx 0 Answer: Z π iπ (2ex + cos(x))dx = 2ex + sin(x) 0 0 π = 2e + sin(π) − (2e0 + sin(0)) = 2eπ + 0 − (2 + 0) = 2eπ − 2 10. Z π (2 sin(x) + sin(2x))dx 0 5 Answer: π Z iπ 1 cos(2x) 2 0 1 1 = (−2 cos(π) − cos(2π)) − (−2 cos(0) − cos(0)) 2 2 1 1 = (2 − ) − (−2 − ) 2 2 =4 (2 sin(x) + sin(2x))dx = −2 cos(x) − 0 11. Z 3 1 x 3 + 3 x dx Answer: 3 Z 1 x 3 + 3 x dx = = = = 12. Z i3 x2 + 3 ln |x| 6 1 9 1 + ln(3) − ( + 3 ln(1)) 6 6 8 + ln(3) 6 4 + ln(3) 3 1 (x5 + 5x + e5x + x5e )dx 0 Answer: Z 1 x6 5x e5x x5e+1 i1 + + + 6 ln(5) 5 5e + 1 0 5 1 5 e 1 1 1 =( + + + ) − (0 + + + 0) 6 ln(5) 5 5e + 1 ln(5) 5 5 −1 4 e 1 = + + + 30 ln(5) 5 5e + 1 (x5 + 5x + e5x + x5e )dx = 0 13. Z 0 1/2 x4 − 1 x3 + 3x2 + 9x + 27 + x2 − 1 x+3 6 dx Answer: Z 1/2 0 x4 − 1 x3 + 3x2 + 9x + 27 + x2 − 1 x+3 Z 1/2 (x2 + 1) + (x2 + 3x + 9) dx dx = 0 Z = 1/2 (2x2 + 3x + 10) dx 0 i1/2 2x3 3x2 = + + 10x 3 2 0 21 31 =( + + 5) − (0 + 0 + 0) 38 24 1 3 = + +5 12 8 II. Find the general indefinite integral. 1. Z x2 + x−3 + x−1 + √ 5 x dx Answer: Z 2. x2 + x−3 + x−1 + Z √ 5 x3 x−2 x6/5 + + ln |x| + +C 3 −2 6/5 x3 x−2 5x6/5 = − + ln |x| + +C 3 2 6 x dx = √ √ ( x + 1)( 3 x + x)dx Answer: Z √ √ ( x + 1)( 3 x + x)dx = Z (x5/6 + x1/3 + x3/2 + x)dx x11/6 x4/3 x5/2 x2 + + + +C 11/6 4/3 5/2 2 6x11/6 3x4/3 2x5/2 x2 = + + + +C 11 4 5 2 = 7 3. Z sin(2x) dx cos(x) Answer: Z sin(2x) dx = cos(x) Z 2 sin(x) cos(x) dx cos(x) Z = 2 sin(x)dx = −2 cos(x) + C 4. Z csc(x)(sin(x) − csc(x))dx Answer: Z Z csc(x)(sin(x) − csc(x))dx = (1 − csc2 (x))dx = x + cot(x) + C 5. Z sin(θ) − sin(θ) csc2 (θ) dθ cot2 (θ) Answer: Z sin(θ) − sin(θ) csc2 (θ) dθ = cot2 (θ) sin(θ)(1 − csc2 (θ) dθ cot2 (θ) Z sin(θ)(− cot2 (θ) = dθ cot2 (θ) Z = − sin(θ)dθ Z = cos(x) + C III. Water flows from the bottom of a storage tank at a rate of r(t) = 600 − 3t2 liters per minute, where 0 ≤ t ≤ 50. If the tank initially held 3000 liters, how much water would be left in the tank after 5 minutes. Answer: 8 The volume of the water that has left the tank is: Z 5 r(t)dt V (t) = 0 Z 5 (600 − 3t2 )dt 0 i5 3 = 600t − t = 0 = 3000 − 53 = 3000 − 125 = 2875 The volume of the water remaining in the tank is: 3000 - 2875 = 125 125 liters3 9
© Copyright 2026 Paperzz