Genomics 88 (2006) 415 – 430 www.elsevier.com/locate/ygeno A microsatellite-based genetic linkage map of the waterflea, Daphnia pulex: On the prospect of crustacean genomics☆ Melania E.A. Cristescu a,⁎, John K. Colbourne b , Jelena Radivojac b , Michael Lynch a a b Department of Biology, Indiana University at Bloomington, Bloomington, IN 47405, USA Center of Genomics and Bioinformatics, Indiana University at Bloomington, Bloomington, IN 47405, USA Received 8 February 2006; accepted 14 March 2006 Available online 19 April 2006 Abstract We describe the first genetic linkage map for Daphnia pulex using 185 microsatellite markers, including 115 new markers reported in this study. Our approach was to study the segregation of polymorphisms in 129 F2 progeny of one F1 hybrid obtained by crossing two genetically divergent lineages of Daphnia isolated from two Oregon populations. The map spanned 1206 Kosambi cM and had an average intermarker distance of 7 cM. Linkage groups ranged in size from 7 to 185 cM and contained 4 to 27 markers. The map revealed 12 linkage groups corresponding to the expected number of chromosomes and covers approximately 87% of the genome. Tests for random segregation of alleles at individual loci revealed that 21% of the markers showed significant transmission ratio distortion (primarily homozygote deficiency) likely due to markers being linked to deleterious recessive alleles. This map will become the anchor for the physical map of the Daphnia genome and will serve as a starting point for mapping single and quantitative trait loci affecting ecologically important phenotypes. By mapping 342 tentative orthologous gene pairs (Daphnia/Drosophila) into the Daphnia linkage map, we facilitate future comparative projects. © 2006 Elsevier Inc. All rights reserved. Keywords: Crustacea; Transmission ratio distortion; Microsatellite DNA; Recombination; Genetic crosses; Comparative genomics; Daphnia; Linkage The waterflea Daphnia pulex (Crustacea, Cladocera, Anomopoda) is an aquatic crustacean that has been central to ecological, toxicological, and evolutionary studies for several decades [1]. More recently, Daphnia has been advanced as the main nonclassical model organism for evolutionary and ecological genomics. Its genome consists of 12 pairs of chromosomes characterized by hypercondensation and minute size [2,3] and contains no sex chromosomes. A previous estimate of haploid C value of 0.24 pg [4] corroborates with subsequent genome size estimates from the Daphnia genome sequencing project of 199 Mb, which places the waterflea near the fruit fly (184 Mb) in terms of genome size. ☆ Sequence data from this article have been deposited with the EMBL/ GenBank Data Libraries under Accession Nos. DQ249348–DQ249470. ⁎ Corresponding author. Fax: (812) 855 6705. E-mail address: [email protected] (M.E.A. Cristescu). 0888-7543/$ - see front matter © 2006 Elsevier Inc. All rights reserved. doi:10.1016/j.ygeno.2006.03.007 Genetic linkage maps have become essential tools for many genetic and genomic studies. They are often used in the assemblage of physical maps and in genome-wide screenings for genetic variation. Recent progress in genetic mapping methodologies has made it feasible to localize and characterize single-gene traits or to dissect quantitative trait loci (QTL). However, rapid progress is impeded by practical difficulties associated with the lack of genetic markers for most species or with obtaining the large size segregating population that is required for mapping [5]. Many nonmodel organisms are very difficult to maintain and breed in the laboratory, and the number of progeny obtained in manipulated crosses is generally small and inadequate for searching for association between segregating markers and quantitative traits. Daphnia is not only well suited to mapping studies but also has the advantage of reproducing sexually as well as asexually. Therefore, the recombined progeny can be maintained clonally in the lab for a long time, which allows the mapping panel to be shared between laboratories and used in further QTL 416 M.E.A. Cristescu et al. / Genomics 88 (2006) 415–430 studies. As part of the Daphnia Genome Project, the linkage map of D. pulex will soon become an essential tool for large-scale studies for localizing QTL that contribute to adaptation and speciation. Broad-scale comparative gene mapping is an effective tool for the study of genome evolution in phylogenetically distant species by examining orthologous genes on interspecific homologous chromosome segments [6,7]. Presence of synteny could reflect the ancestral genomic organization and could also indicate the incidence of genomic regions resistant to linkage disruptions. Spatial comparative genomics can also aid in transferring genetic information from genetically well-characterized model species to less developed study organisms. However, large-scale comparative genomic studies depend heavily on the availability of extensive and transferable linkage maps in model as well as nonmodel species. This approach is impeded by the lack of a sufficiently diverse collection of genetic systems for most taxonomic groups. For example, with the exception of the preliminary linkage maps for the black tiger shrimp, Penaeus monodon [8] and the white shrimp, Penaeus vannamei [9], there are no genetic maps for crustaceans. Moreover, most genetic linkage maps are based on dominant markers (e.g., AFLP, RFLP, RAPD, RAPD-SSCP) that are not easily transferable across mapping populations or species. Microsatellites, in contrast to dominant markers, offer the advantage of being easily transferable. In addition, microsatellites have high levels of intraspecific and intrapopulation allele polymorphism, are ubiquitous in prokaryotes and eukaryotes, encompass both coding and noncoding regions of the genomes [10], and largely display a random distribution across genomes. All of these characteristics promote microsatellites as ideal markers. In this paper we present the first genetic linkage map for D. pulex based on 185 markers (most of which are microsatellite loci) on 12 linkage groups. In addition to discussing the recombination landscape of the Daphnia genome we report the map location of 342 genes that show homology to Drosophila genes. We used these coding markers to search tentatively for conserved synteny between the two genomes and discuss the prospect of crustacean genomics. Results Linkage map The total number of genotypes analyzed for this study was 21,546, including 185 loci and 129 individuals. The total number of individual genotypes analyzed per locus varied from 65 to 127, with an average of 115. A preliminary linkage map was constructed and instances of double crossovers were reexamined. We estimate that the data set contains less that 1% error. Overall, 97% of the markers tested showed detectable linkage to another marker at a lod threshold of 4.0. The final linkage map consisted of 12 linkage groups and spanned 1206 cM with an average marker spacing of 7 cM and with few map segments being identified by multiple cosegregating markers. The size of the linkage groups ranged from 6.9 to 185.3 cM (mean: 100.5 cM) and the number of markers per linkage group varied from 4 to 27, with an average of 15 (Fig. 1). Genome size and coverage We estimated a total genome length of 1367 cM using the method of Fishman and colleagues [11], which accounts for the terminal parts of the linkage groups by adding twice the average spacing of markers to the lengths of each linkage group and summing across linkage groups. Using the method of Chakravarti and colleagues [12], in which the length of each linkage group is expanded by (m + 1)/(m − 1), where m is the number of loci mapped, we obtained a corrected genome length of 1398 cM. The percentage of the genome covered by the linkage map based on these estimations of the genome length is 87.2%. Assuming a random distribution of markers and 12 linkage groups, we estimate that 95% of the genome is within 3.84 cM of a marker. Marker distribution Closer examination of marker distribution reveals clusters of markers on several linkage groups (Fig. 1). The clustered markers may not necessarily be closely spaced physically, but may appear aggregated due to the low recombination rate in particular regions [13,14]. Since most linkage groups contain only one region of recombination suppression, it is likely that these regions are associated with centromeres. There are a few large gaps within linkage groups (>30 cM), and it is difficult to determine at present whether these gaps represent false linkages or recombination hot spots. More extensive examination of recombination suppression will require typing markers in various crosses and the estimation of physical distance in these regions. Transmission ratio distortion Using tests for random segregation of alleles at individual loci, we determined that 21% of the 185 markers surveyed showed significant transmission ratio distortion (TRD) primarily due to homozygote deficiency and likely as a result of markers being linked to deleterious recessive alleles. Markers that showed TRD were clustered mainly in four linkage groups (II, V, VI, and X) with linkage group X containing almost exclusively markers that deviate significantly from the expected Mendelian ratio. Comparative analysis The availability of orthologous coding markers (type 1 markers) is critical to studies of synteny and colinearity [15]. We identified 342 putative orthologous genes between M.E.A. Cristescu et al. / Genomics 88 (2006) 415–430 417 Fig. 1. Linkage map for the crustacean D. pulex, based on genotypes for 186 microsatellite DNA markers and two protein coding loci in 129 F2 progeny. Numbers on the left of the map framework indicate cumulative genetic distance in centimorgans (Kosambi) between markers, while codes on the right indicate marker names as identified in Appendix A. The 12 linkage groups were arbitrarily ordered from largest to smallest and the number of loci and the corrected genetic length are indicated above every linkage group. Markers exhibiting significant deviation from expected Mendelian segregation ratio are denoted with † and corresponding regions exhibiting significant transmission ratio are shaded. Markers placed relative to the frame map at a log-likelihood threshold of 2.0 are denoted with ‡ and no distances are presented, that is, their distance from other markers is arbitrary. Markers appearing on the same line are markers that cosegregate and the order of the markers on the line is arbitrary. Horizontal interrupted lines point to specific regions of linkage groups that disassemble at a lod score greater than 6. Daphnia and Drosophila. The majority (86.6%) of the genes were located within 50 kb from the closest marker, with about 5% being placed 2 kb apart from the closest marker (Fig. 2). By examining the relative map location of Drosophila/Daphnia pairs of genes in the two genomes we identified a lack of synteny. The contingency table analysis found no relationship between the linkage groups of the two species (likelihood ratio χ2 = 25.703; df = 264; P = 0.176). The simple cluster analysis suggests that the null model of uniform random gene order could not be rejected (χ2 = 8.53; df = 4; 0.1 < P < 0.05). Therefore, we could not reject the hypothesis that the observed clusters could have occurred by chance. Discussion This map represents the first step toward advancing genomic studies on Daphnia, which will conclude with the sequence of the whole genome in assembling stage at the Joint Genome Institute. Genetic length The map distance spanned approximately 1206 cM and included 185 loci and 12 linkage groups. It is therefore highly likely that all 12 chromosomes have been marked, although further assignment of actual chromosomes to linkage groups will be impeded by the very difficult cytogenetics of the Daphnia chromosomes, which are largely morphologically indistinguishable [2,3]. Considering a genome size of approximately 184 Mb and a genetic length of 1383 cM, it can be inferred that 1 cM spans a physical distance of about 133 kb. The physical distance of one map unit in Daphnia is 1 order of magnitude smaller than in human or mouse [16,17] and is more comparable with other invertebrates with small genome size such as Bombus terrestis (∼255 kb/cM) [18] and the honeybee Apis mellifera (∼44 kb/cM) [19]. The high magnitude of recombination per physical distance we found in Daphnia is consistent with the observation that the intensity of recombination scales negatively with genome size [20]. This is not unexpected given that chromosome 418 M.E.A. Cristescu et al. / Genomics 88 (2006) 415–430 Fig. 2. Histogram of gene distribution based on distance from the closest marker. number is not correlated with genome size and that most species experience one or two meiotic crossings over per chromosome [20]. [27], which found 20–50% decrease of survivorship to maturity or egg survivorship. Mapping crustacean genomes Transmission ratio distortion The segregation of genetic traits from parents to offspring is expected to conform to Mendel's rules. However, deviation of transmission ratios among offspring is often observed in interspecific crosses in animals and plants and occasionally in intraspecific crosses [21–23]. The mechanisms responsible for TRD are not completely understood but may result from altered chromosome segregation [24], differential viability of gametes, or differential survival of different genotypes [21]. Our tests for random segregation of alleles at individual loci revealed that 21% of the markers showed significant homozygote deficiency. These markers were clustered in four genomic regions that span between 30 and 70 cM. Since our recombinant lines experience low hatching success (∼20%), low survivorship during first days of life (∼30%), as well as a relatively high incidence of infertile progeny (∼10%; excluded from the study) we suggest that the TRD was due mainly to the high genetic load of the parental lineages, reflected in the loss of alleles tightly linked to deleterious recessive genes or infertility recessive genes. The magnitude of inbreeding depression is in agreement with previous selfing experiments in Daphnia pulicaria and Daphnia arenata [25], Daphnia magna [26], and Daphnia obtusa The Daphnia linkage map serves several goals. First, the map is sufficiently dense to be used as an anchor for the construction of the physical map of the Daphnia genome by providing an ordered scaffold onto which “contigs” of overlapping clones can be assembled. Second, this map provides an effective tool for genetic analysis and manipulations and could be extended and used as an effective tool for identifying single loci or quantitative trait loci and for underpinning the genetic substrate of evolutionarily and ecologically significant traits such as sex determination, response to environmental stress, and reproductive isolation. Third, the map could be employed in comparative linkage mapping. Of the 183 microsatellite markers included in the map, 60 have been successfully amplified in Daphnia species outside the D. pulex complex (e.g., D. obtusa), and the majority of markers worked for species within the D. pulex complex (e.g., D. pulicaria, D. melanica). These homologous markers will make possible a comparative synteny analysis in the genus Daphnia. Furthermore, the enrichment of the linkage map with coding markers will enable comparative mapping with less related species for which high-density maps are available and will instigate comparative studies with other crustaceans for which full genomes remain to be characterized in the near future. The prospect of comparative genomics within Crustacea is M.E.A. Cristescu et al. / Genomics 88 (2006) 415–430 particularly appealing given that the subphylum Crustacea includes over 50,000 described species with immense variation in adaptations and body plans and includes many species of high economic importance. The explosive progress in the genomic field will likely transform small genomic projects that involve marine crustacean species (e.g., the blue crab Callinectes sapidus, the blue shrimp Litopenaeus stylirostris, the white shrimp Litopenaeus vannamei, the daggerblade grass shrimp Palaemonetes pugio [28]) into large-scale genome sequence projects. Search for synteny Comparative linkage mapping has provided evidence that genes in eukaryotic genomes are distributed nonrandomly. For example conservation of linkage relationships was found not only between closely related species of insects [29], mammals, fishes, and plants but also between different phyla. The search for residual synteny culminated with the discovery of a few ancient syntenic gene groups spanning vertebrates, invertebrates, and single-cell eukaryotic genomes [30]. In general, genome organization appears to be less conserved between distantly related species (e.g., outside of family level). As the genomes diverge progressively, the networks of synteny are often eroded by extensive gene duplication, gene loss, and horizontal gene transfer [31,32]. This degeneration of homology makes sorting between genuine remnants of ancestral gene order and simple coincidence very difficult [33]. It does not come as a surprise that our data suggest a lack of macrosynteny between Daphnia and Drosophila genomes. The estimated divergence time between Insecta and Crustacea is 666 ± 58 million years (Myr) [34], a long evolutionary history that led to an apparent randomization of gene order. Moreover, an extreme rate of internal chromosomal rearrangements of 0.9–1.4 chromosomal inversions fixed per million years was found within Drosophila [31]. Based on this rate, the authors suggest that for taxa that diverged more than 250 Myr ago information transferability will be useful only over 419 very short chromosomal distances (less than 100 kb). The full genome sequence of Daphnia will make possible the identification of residual synteny at a finer genomic scale. Ecological, evolutionary, and toxicological studies on waterfleas extend back several hundred years. The advent of genomic advances will greatly accelerate traditional studies on Daphnia and will open the door for new genomic approaches and promote the establishment of emerging interdisciplinary research areas such as ecological genomics or toxicological genomics. Materials and methods Crosses We studied the segregation of 185 polymorphic loci in 129 progeny (F2) obtained by selfing one D. pulex (F1) interclonal hybrid (Fig. 3). To obtain recombinants from animals that reproduce by cyclical parthenogenesis, we first created a panel of outbred F1 isolates and selected one line that regularly produced males and meiotic eggs under standard laboratory conditions and whose selfed embryos required both decapsulation of ephippia and strong stimuli to resume embryo development. The selected F1 hybrid was clonally propagated within 10-L aquaria at 20°C under a 14 h light:10 h dark photoperiod. These populations were maintained at densities of approximately 1 individual per 5 ml of filtered lake water by feeding a concentrated monoculture of green algae (Scenedesmus obliguus). Under these conditions, Daphnia sexually produced resting eggs (ephippia), which were collected and decapsulated. The obtained embryos were incubated for a week in the dark at 5°C and then transferred to a 12 h light: 12 h dark photoperiod at 15°C to stimulate the breaking of diapause. In all, 129 progeny (F2) were reared to maturity and individually cultured in 250-ml beakers. Genomic DNA extraction Total genomic DNA was extracted using a CTAB extraction method [35]. Whole adult individuals were ground with a plastic pestle in a microcentrifuge tube in CTAB DNA extraction buffer. Microcentrifuge tubes were placed in a water bath at 65°C for 1 h. The chloroform/isoamyl alcohol (24/1) extractions were followed by DNA precipitation, 70% ethanol washing, pellet drying, and DNA resuspension. Samples that had a low amount of tissue were extracted with a ProK extraction protocol [36]. Fig. 3. Crosses performed to obtain segregated progeny for map construction. To obtain a heterozygous F1 lineage, crosses were conducted with parental lineages of D. pulex (arenata) from two Pacific coastal ponds in Oregon (LO and SL) that showed marked genetic differentiation when screened at allozyme and microsatellite loci [50]. The recombined F2 progeny were obtained by selfing the F1 hybrid. 420 M.E.A. Cristescu et al. / Genomics 88 (2006) 415–430 Microsatellite markers and genotyping The majority of the microsatellite markers consisted of simple or complex di- and trinucleotide repeats. Two additional markers consisted of protein-coding loci that show allelic length variation of more than 2 bases at one intron region. Primers were designed either by Colbourne and colleagues [37] or were created during this study using the programs Primer3 [38] and MicrosatDesign [39] and trace files obtained by the Daphnia Genome Sequencing Project (Appendix A). We employed the M13(-21) primer genotyping protocol [40]. The forward, sequence-specific primers were 5′ extended with the M13(-21) oligonucleotide. The polymerase chain reactions (PCR) were performed in 12-μl reactions with 10 ng of DNA template, 1× PCR buffer with 25 nmol of Mg2+, 0.5 units of Taq polymerase, 2.5 nmol of each dNTP, 1 pmol of the forward primer, 2 pmol of the reverse primer, and 2 pmol of the universal fluorescence-labeled M13(-21) primer. To reduce nonspecific amplification, we used a touchdown PCR. Thermal cycle programs included an initial denaturation step of 3 min at 95°C followed by 10 cycles of 35 s denaturation at 94°C, 35 s at final annealing temperature + 10°C (the annealing temperature was decreased by 1°C every cycle during each of the 9 following cycles), 45 s extension at 72°C followed by 30 cycles of 35 s denaturation at 94°C, 35 s annealing temperature at 48°C, and 45 s extension at 72°C, with a final extension at 72°C for 10 min. The amplified products were diluted 40- to 60-fold and combined in groups of four to six according to their size and fluorescent labels (NED, PET, FAM, VIC). Two microliters of the diluted PCR product was then mixed with 8.9 μl of H2O and 0.1 μl of GeneScan–500 LIZ size standard (Applied Biosystems, Foster City, CA, USA). Samples were denatured for 5 min at 90°C, quickly cooled on ice, and genotyped using an ABI 3730 and GeneMapper software v3.0 (Applied Biosystems). One allele from each amplified locus was subsequently sequenced, to verify that the microsatellite DNA corresponded to the expected type of repeat. Sequences obtained in this study have been deposited with GenBank (Accession Nos. DQ249348–DQ249470). Linkage analysis To assemble linkage groups by maximum-likelihood we used MapMaker/ Exp v3.00 [41]. Genotype data were entered in both phases to satisfy the requirements of the software (the absence of phase information does not impact the results of the software). All markers were tested for significant deviation from Mendelian segregation using a χ2 test (α = 0.01). Markers that showed significant TRD were double checked for genotyping errors and reliability. Marker clusters were initially identified using a LOD of 4 and after excluding TRD markers. To minimize the number of false linkage groups, the stability of each linkage group was further tested by gradually increasing the lod score to 8. For example, two large groups supported by LOD 4 were subsequently broken up by increasing the minimum LOD to 5 and 6, respectively. The most likely order of markers in each linkage group with nine or fewer markers was determined by calculating the maximum-likelihood map, and the corresponding map's likelihood for each possible order of markers using the “compare” command. For all other linkage groups with more than nine markers, the “order” command was used to obtain the sequence of markers with unique placement with the criteria for finding highly informative markers set to 4 maximum distance, 100 minimum individuals. The “try” command was used to determine the most likely placement of the orphaned markers, and subsequent orders were tested using the “ripple” command with “error detection” and “use three point” options enabled. The distances between neighboring markers were calculated using the multipoint analysis implemented in the “map” command. The Kosambi mapping function that incorporates the possibility of crossover interference was used to convert recombination frequencies into map distances [42]. The linkage map was drawn using MapChart software [43]. Dealing with genotyping errors Since even small fractions of genotyping errors can artificially increase the total length and influence the marker order of the map, we employed several different approaches to estimate and minimize genotyping errors. For example, 15 randomly chosen markers and six F2 progeny were sequenced and genotyped twice. Based on the duplicated data, we estimated an average genotyping error to be less than 1%. The genotyping data were scored independently by two persons, and differences were compared and resolved. In general, discrepant data points were left as unscored. Moreover, the data were analyzed with the “error detection” algorithm enabled, and genotypes with LOD-error values of about 1.0 or greater were considered candidate mistyping errors [44] and were double checked. Genome size and coverage To calculate an estimate of the total map length (Gl) for the genome, we used the methods of Fishman and colleagues [11] and Chakravarti and colleagues [12]. These estimates were subsequently averaged and used to estimate the expected distance of a gene from the closest of n random markers, E(m) [45,46]. Sequence comparisons between Daphnia and Drosophila As a first attempt to identify conserved chromosomal regions between crustacean and insect genomes, we mapped the locations of putative Drosophila orthologous genes onto the Daphnia genetic map by first annotating the available genome sequence assembly provided by H. Shapiro and the Joint Genome Institute. This preliminary assembly—at the halfway point of the Daphnia Genome Sequencing Project—consisted of 3804 scaffolds (23,428 contigs) with a total length of 184 Mb. The length weighted average of the scaffold sizes (N50) was 776.2 kb. Putative Daphnia genes were identified by aligning the Drosophila proteome to the scaffolds using the tBLASTn program [47], with a grid-aware version of the NCBI software developed by P. Wang at Indiana University, implemented on the TeraGrid (http://www.teragrid.org/). This analysis was performed and archived by Don Gilbert at wFleaBase [48]. We required that a protein show a significant similarity (cutoff of E was 10−10) to be considered an ortholog. We next positioned the microsatellite markers relative to the annotated genes using the BLASTn program on a local computer. For each of the markers mapped onto scaffolds, we then extracted the gene identities for the two best, nonoverlapping, matches to fly proteins flanking the microsatellite, for a maximum of four positioned genes. The relative placements of these genes on the Daphnia linkage groups and Drosophila chromosomes were compared to identify broad-scale syntenic relationship between the two genomes. First, we used a contingency table analysis to test for associations at the linkage group level between the two genomes. Test of significance were performed by a likelihood ratio χ2 test in JMP IN 5.1 [49]. Second, we conducted simple cluster probabilities. We calculated the probability of finding a cluster association between genes linked to a particular marker in the focal species (Daphnia) and their orthologs in the reference genome (Drosophila) under the model of random gene order. Acknowledgments We thank members of the Lynch and Rieseberg labs for engaging discussions. We are grateful to C. Scotti Saitagne and T. Crease for helpful comments and suggestions on the manuscript and to X. Hong and D. Gilbert for data mining support. E. Williams, A. Seyfert, A. Wolf, V. Cloud, and B. Molter helped with Daphnia maintenance. This project was financed by grants to M.L. from the National Science Foundation (DEB-0196450 and EF0328516) and by a postdoctoral fellowship to M.E.A.C. from the Natural Sciences and Engineering Research Council of Canada. M.E.A. Cristescu et al. / Genomics 88 (2006) 415–430 421 Appendix A. List of primers used in the study Accession Nos. AYxxxxxx correspond to primers developed by Colbourne and colleagues [37], while Accession Nos. DQxxxxxx correspond to primers developed during this study. Pr. code Primer name LG Accession no. Allele size Left primer Right primer d001 d002 d003 d004 d005 d006 d007 d008 d009 d010 d011 d012 d013 d014 d015 d016 d017 d018 d019 d020 d021 d023 d024 d025 d026 d027 d028 d029 d030 d031 d033 d034 d035 d039 d040 d041 d042 d043 d044 d045 d047 d048 d049 d050 d051 d053 d054 d055 d057 d058 d059 d061 d062 d063 d064 d065 d066 d067 d068 Dp149 Dp321 Dp24 Dp28 Dp463 Dp70 Dp74 Dp1498 Dp48 Dp71 Dp123 Dp146 Dp91 Dp126 Dp147 Dp339 Dp62 Dp143 Dp337 Dp170 Dp295 Dp460 Dp231 Dp298 Dp1486 Dp156 Dp385 Dp430 Dp319 Dp240 Dp421 Dp304 Dp475 Dp40 Dp1489 Dp137 Dp208 Dp330 Dp1494 Dp1493 Dp395 Dp199 Dp144 Dp1491 Dp193 Dp300 Dp115 Dp21 Dp78 Dp112 Dp196 Dp1487 Dp111 Dp1495 Dp1490 Dp142 Dp1492 Dp308 Dp53 I II III II X XI I III I III IX VI V VI II II II IV III VI IV X V VI Unlk VII VI IV V V Unlk X VI I VII III V IX II VIII II I III II Unlk I III V IV VII III VI* III I III VIII III III VIII AY619162 AY619341 AY619034 AY619038 AY619486 AY619081 AY619085 DQ249470 AY619059 AY619082 AY619135 AY619159 AY619102 AY619138 AY619160 AY619359 457/462 253/263 209/213 379/387 302/307 272/278 358/362 215/241 361/364 155/164 257/271 388/393 316/319 173/178 429/433 174/178 503/538 376/388 156/158 273/285 212/216 296/300 232/235 347/352 270/292 153/156 318/320 198/203 191/196 266/268 288/291 379/384 262/265 404/409 169/174 232/234 341/358 152/156 343/346 312/314 224/225 316/320 235/239 184/187 183/188 324/326 281/284 238/242 463/466 356/359 268/275 359/379 443/457 420/426 176/182 357/362 336/343 231/237 352/356 ACACAGACCCGCCATCCATT ACTCCAGATCGAGGTGTTGG TGGCGGGCGGAATAGTTTG GAAGGCGAAACATAAATAAAACAC TCGCCGATGAAAATACTCC ATGGGGCGGAATCAATCAC TGCGCCGCGATGTTTTCC CACGATACGGCGGATTTTGT TCAATCCCATCATCCCATC CGCGCAACTCTTTCTATTATAC GGCATCCTCCCAGTAATTGA GCATTGCAGGTGGCATTTTC CGTACCGCAAGAGGATAGGA TGCGTGAATCCGTGATATTTGA AGAGGGAGACCCGCTTCGTT CGCCTCCCTCCGTCTATTCT AGCAAATGGGGTGACTCG CTCAGCAACCAGGACCGTTG GGTCACCTCCTCTTCGCTCTCCTC TTGTTGTCGGAACGATGACG CCGCGCTCTAACCGCTAAAT GCCAAAAGCCCAAGGTAAGG CCCAAACGATTGTAAAAATAAAAAGA TGCTGCTTCTTTTTGGGCAT GTCAACGATCGAATCGGACT TATTGCCGGGTCGTCAGTCT CCTGTTTCACCTAGCCCACG AGAGTGGGCGAACGAACAAA GGCCCCAGCAGTTCCTTATT CGCGAATACCCCTCTTTGTG GCTCGACACACCGGTTAAGG CGGCGTGCCAGGAGATCTAT CGTAAATAAACCGAGGCGCA CTATACAGCGGCTTCGGCAC TCAACACAACGGATTTGGAA AGCAAACGACGCACGAAAAT GGGACCGGACATGTGTTGTT GGGTTTTGGAGGCGAACTCT CCACTCTGCGGGAAATGAAC ACACAACCATCCGGCATCTT GGAGACCAAACCATTGCCTG ATTTCCCTGGGACGCTTGTT ATTGTTGTTTGCGTCCGAGG GTAACGTGCGTGCATGTGTG ACTCGACGGGAGCAGAATGA GTTGGCGACTCTCTCGCATT CGGACGTGTCAATGAACGAA GACGGAATTCAATAGAGAGAAAAATG GCTGCAAAGCGGAAAAATTG TTTGCCCATTTTAGCGGTTG CCAGCAGACGAGCCAAATTC CCTCTTTGGCTCTGATTTCG TCTATTGAACGACCGAGACG GAAACTGGCTTGCAGCTGAT CAGCTGGTCCCCAAACCATA GCGACTTGACCCAACCAGAA TGATGCGGGTCTCGAGTTTT GTGACGATGTCCGCACCTTT CGGTAGACGGCCAACAAGTC ACATGTGCCGGACTCGTGAT TAGCGAGAGGCGAAGAAGAG ACTTTCCGACCGGTTTCTTCTTG AACCCCGGCGTGAATCC CAGCAAATAAGCCCGTGTG GAGGCGCATCGGCTAAAAAG TGCGACCGACTTATGAACCAACTG TCAAAACGGCAACATGGAGA CCGCATCAATTATCTTTTTCTG AACGACCAGGCGCTCTAC TTAGCCAGCCCTCAGAAAAA ATGCCAAGTCTTCCCCTCCA ATCTCTCCCCGAAAGGAAGA TCGATTGGGATCCAGCCAGT ACAGCTCCGCCAAACAAACA CCCAGCGTGTGACATCTCAAT ATGGCGTGGAATAAAGAATGTT ACCTGGAACCTGCAATGACG ACAAGTCGTGCGCAGTTTCCAATC ACCACAGCGGGACAAGAGAA GAGAAATCCTCCCGTTTGGG GAGCGATGTACACGCACGAG GACACGGCCGAGATGAAATC GGCCGACAGCCCTTATATCC TGACCGCCAGGAAATAAATC GATGCGCCAACAGCATATCA CTTTTGCTTATGCCCTCCCC CGGAGAAAAACACGGACGAAG CATCATGGCATCAGCCAAAA GTGCATTCCCCTTTGGATGA ACCCCAAAAATATGCTGCCA CCCAAACGCGATTATGCAAT GCTCAAATGGAGAAATGGCG TGGCTGCTGCGATATCAAAA ATTGTGCTGGGAGCTAGGTT TGCAAGGTATTCAGCGACGA ACCCCTCACGACCCTTCTGT AGTGTTGTCCAGCCGCAACT TCACAGTTGTGATGGACGGC CGAGCGAATTAAGCGGTCTG TCAATGCGAAATTCGAGACG TCGATTGGCTTTGATCGCTT AAAAGGGCGGAGTGTGTTGA CGAAAAATACCGCAACGCTC AACCACAGCCGCTCAACTTC CACCCAGACTCTCGTTCGCT CGGTCGTAAATCAACTCCGC GACACGGGAAGCGTTTGAAG ACCGGTCTGGGTCAAACCTT CCTGCGAGGGTCAATATCCA CGGAAGCTTGGGATTCCTTT GGCGACGTGTTGAGTTTCTT CGTGAGGTCGAAACCAAAAT ATTCCCATGGGTGGCCTAAA ACACCGGGGGAGATTACACC GGGAGATCGTGAGCGAACCT CCAGCAGACGAGCCAAATTC TCCGTCTTCTCCTCACGACG GCTAAATTTCTCCCGCTGGC AY619156 AY619357 AY619183 AY619313 AY619483 AY619247 AY619316 DQ249461 AY619169 AY619408 AY619453 AY619339 AY619257 AY619444 AY619322 AY619498 AY619051 DQ249462 AY619149 AY619223 AY619350 DQ249466 DQ249465 AY619418 AY619214 AY619157 DQ249464 AY619207 AY619318 AY619127 AY619031 AY619089 AY619124 AY619210 AY619123 DQ249467 DQ249463 AY619155 AY619327 AY619064 (continued on next page) 422 M.E.A. Cristescu et al. / Genomics 88 (2006) 415–430 Appendix A (continued ) Pr. code Primer name LG Accession no. Allele size Left primer Right primer d069 d070 d071 d072 d073 d074 d075 d076 d077 d078 d079 d081 d082 d083 d084 d085 d086 d087 d088 d089 d090 d091 d092 d093 d094 d095 d096 d097 d098 d099 d100 d101 d102 d103 d104 d105 d106 d107 d108 d109 d111 d112 d113 d114 d115 d116 d117 d118 d119 d120 d121 d122 d123 d124 d125 d126 d127 d128 d129 d130 d131 d132 d133 d134 d135 Dp224 Dp325 Dp311 Dp1496 Dp361 Dp389 Dp530 Dp564 Dp559 Dp616 Dp557 Dp605 Dp581 Dp641 Dp687 Dp642 Dp693 Dp648 Dp660 Dp675 Dpl1/87 Dp655 Dp808 Dp721 Dp770 Dp785 Dp571 Dp572 Dp589 Dp609 Dp775 Dp802 Dp725 Dp729 Dp742 Dp779 Dp830 Dp867 Dp813 Dp821 Dp907 Dp848 Dp883 Dp884 Dp840 Dp878 Dp887 Dp621 Dp632 Dp637 Dp1485 Dp50 Dp1497 Dp117 Dp815 Dp838 Dp696 Dp726 Dp746 Dp754 Dp612 Dp895 Dp786 Dp553 Dp985 II II IV X VI II III I VIII III II IV III X IV VI XI V IX IV V I XI V III II I III I IX V I II I II IV IV VII III II VI II VIII I I IV VIII IX V II VIII III II II VI V X XII II* I VI III VII I VI AY619240 AY619345 AY619331 DQ249468 AY619383 AY619412 DQ249359 DQ249441 DQ249443 DQ249382 DQ249361 DQ249406 DQ249391 DQ249429 DQ249455 DQ249364 DQ249353 DQ249387 DQ249372 DQ249413 268/272 184/192 134/136 156/159 313/323 129/133 155/161 256/265 231/241 189/199 156/163 288/295 323/327 290/294 208/211 318/320 164/176 328/337 124/129 279/287 233/236 262/271 216/223 236/244 272/283 189/195 166/168 126/130 236/241 250/285 141/148 124/129 261/264 134/138 236/242 145/149 300/308 218/224 240/252 304/307 268/288 175/181 251/255 219/223 272/278 317/323 220/227 119/124 287/289 234/238 397/416 204/211 306/312 236/240 291/295 256/259 306/327 229/233 165/172 279/299 240/254 258/263 140/144 197/202 251/254 TCTCTGCCACCCCAACAAAT GCACCGAAAACCCAATCAAA TCCACCTCCTTCCTCACCAA CCCATCTCACACCAGCAACA GGCGGCAACATCCAAAGTAA GCGAAGAAAAGCTGGTGGTG TCCTGTCAATTTCCCCAGAG TGGGAGGATCGATAAAAACG TGTGGAACAGATGGCGACTA CGGAAACTTGTGAGTGGGTT GCTCTGTTCTCTGGGCAAAC AGTCCGGAATTGACACCATC AACTCAATTCGGAATCACGG TTTTTCTCCGTGTCTTTGGG AAAAACGGCCAAGAAAAAGG CCGGGATATGAATGTTTCTCA AACAGATTTGTTTGCAGGGG GGAAATGAAAAATGGGACGA TTTCACAACTGCTTTGGCTG CGCGACATGACTCAAAACAC GAGGGATTTGTGTAGGTGC CGTACTAGGCCACTTTCGCT TGTTGTTGCATGACGAATCC TGAAATGATGATGTCGTCGC TTTGCCGAGTACCAGTAGGG CAGAATCCTTTGCTTTTCGC CTGGAGAGCGTCCTGCTACT CGCTTGGAAGAAAAGAAACG AAAAGGCCCAGTCGAAATCT CCCATCGGTTGTGTAGGTTT GTAGCGTTGGTTGCTCATCA AGTGATGGGCTCCTTTGATG ATCAGCATTCACGACACAGC GGCCAATAACAGCCGAAATA TGTATATCGCCGTGTGATGG TTTACCGTTAGCTTGACCGC TGCTAATCATGTGGGCGATA TCGTGAGTGAGGTAAGTGCG GGGGTCCTTCGGTCATTATT GCACACAACCAACCACAAAA GCGACACAGCGAAGGTAAAT TTTATCGCATTTTATGGGGC CCCCTTTTGCTTTTGTGTGT TCTGTGGAAAACTCTCGGCT CATGCCGGTAAACGTCTCTT ACGGAAAACAAGCCATTCTG TCATAGTCACAACGGCCTCA ACTCGACACAAGCGGAAAGT ATGTCAGCCGAAAAAGGCTA CAAAGATCCGCAAAAGAACC TAGTTGTTGGCTTGCGATG CGGTCAACAGCGATAAATG TCTCTTTTCCGTGTTTCCCG CGAAAGAAGAAACGGCAGTC TCGCGTTTCACAATCTCTTG TTGGCTCCTTCACAATTTCC CGTGGCATTCTGCTGAACTA GAAAACGCTGCCAGAGAGAT CCCATCATCTGTCCGTTTTT CTCAGGAGCTGGTGGCTAAC TATCGCATTATCCATTCGCA ATTTTGTTTCGTGGGGTCTG CCTATTTGCATCGTCGGTTT ATTGGTGGAATGAGTCGAGC GCACTGCTCCTCTCCTCCTA TCATCACCGGTACATCGCAG TTTGTCCGCACCCATATTCC GCGCGGCAGTGAAATAAATC AAAAGGCTGGTCCCGATTGT CCTGCTTCCAGTCCAAAACG TCCATGGGAAAATCACTGCC GCTGGAGATGGGTGATTCAT AACCGATCACGTAAGTTGGC CACTCTCAACGATCCAAGCA GACGGTTCCATTTGCTGATT TCAAAACCAGCAACAGCAAG CGAAAATTCTTCCCTCCTCC CCCACCGATTTTGATGTTTC AGCTCATTTTGATGGATGCC CACTCCACGGGAGAAGGATA GACGACTGCGTGATACAGGA AGGAAAACTAATCGCCGGAT GATCCCTTTAAGGACACGCA TGCTGCGTGTGTTTATGTGA TATAGTGCGACTTTGTGCCG ATGAGCCAAAAGAGCTGC ATTTTCCCGAATCCTATCCG ACTGAGAGCAATGCCGAATC CGAGCAGCAATGAGATGTGT TGCAGCATATCCATCTCAGC GCCACCCTTTTAATAAGCCG CAAAACCTCCCCTCAAGTCA AGTCCGGAGAAAGGATGGAT ACTCCCTCGACTTCTGACCA CTTGTGGTCCTTGTTCGGTT ACCTGCAAAAGACCCACATC CTCTTCCCTCGATCAGTTGC CTTTTCACGAAATGCGACAA AGTGAAGAAGACGACGCCAG ATGTGTCTGTGCGTGCGTAT TGCGTGTTTTGGGTGTTCTA ATCAGCATTCAGTCGTGCTG CCCGTCATCAAAAGGAGAAA GGGTAATTACGACCCGTGTG GACCTCAGCAATATAGCCCG GTCATCGTTGTCGTGTGGAC ACAAGTTTCACAAGGCCCAG CCTCCTGGTCGGATTACAGA CACCTACCGGCTGAAATTGT GATTGCGAGTAGTTGCCCAT ACGGACACAATGGGTCTAGC CACGTCTTCATTTCCAGGCT AAAGGGAGGAGCTGAAATCC GTCAAAGGGAAGATGACCGA AGCAAGCCCCCTCTCTACTC CTTTATTAACCAGGGTAGTATGC AGTCCGATGATGCCACTG CCTGCGAAATAGCAACCCTG AGGTCCTTCGTGACTCGTCT CAGGACCATAAAGTCCCGAA ACACCGTGACCTTTTCGTTT CGTGAAGCAACAGAGGGAAT GAGGAGGAAACGGGAGAAAC CTTGTGATGCATGCGCTAGT AGCACAAATATCTGACCCCG ATAAGACCGTGACGATTCCG GCAAAGGCGAGAAAGAGAGA GGCTTGGATGAACGTCAAAT GGCATGCCGTTACAAATTCT CGGGCGACAAACGATATAAT DQ249403 DQ249447 DQ249408 DQ249438 DQ249374 DQ249456 DQ249369 DQ249385 DQ249442 DQ249394 DQ249363 DQ249418 DQ249439 DQ249421 DQ249405 DQ249414 DQ249426 DQ249404 DQ249440 DQ249409 DQ249400 DQ249366 DQ249351 DQ249401 DQ249355 DQ249362 DQ249444 DQ249420 DQ249457 DQ249460 AY619061 DQ249469 AY619129 DQ249384 DQ249396 DQ249448 DQ249424 DQ249436 DQ249452 DQ249459 DQ249454 DQ249431 DQ249383 DQ249349 M.E.A. Cristescu et al. / Genomics 88 (2006) 415–430 423 Appendix A (continued ) Pr. code Primer name LG Accession no. Allele size Left primer Right primer d136 d137 d138 d139 d140 d142 d143 d144 d145 d146 d147 d148 d149 d150 d151 d152 d153 d154 d155 d156 d157 d158 d159 d160 d161 d162 d163 d164 d165 d166 d167 d168 d169 d170 d171 d172 d173 d174 d175 d177 d178 d179 d180 d181 d182 d183 d184 d186 d187 d188 d189 d190 d191 d192 d193 d195 d196 d197 d198 d199 d200 Dp998 Dp936 Dp957 Dp924 Dp967 Dp1040 Dp1148 Dp1232 Dp1325 Dp1397 Dp1041 Dp1155 Dp1236 Dp1160 Dp1238 Dp1327 Dp1350 Dp1059 Dp1185 Dp1311 Dp1328 Dp1338 Dp1050 Dp1123 Dp1302 Dp1346 Dp1368 Dp1262 Dp1404 Dp1300 Dp1354 Dp1372 Dp1058 Dp1290 Dp1309 Dp1396 Dp1112 Dp1266 Dp1363 Dp1276 Dp1278 Dp1376 Dp1409 Dp1073 Dp1144 Dp1056 Dp1079 Dp1057 Dp1080 Dp1195 Dp1347 Dp1399 Dp1391 Dp1351 Dp1189 Dp969 Dp1005 Dp1048 AO5 AO92 P1N22 III XII I IV II VI IV VI IX Unlk III I IX VIII VI VI VI VI* IV IV VII II* Unlk V X II I V VIII VII I IV III I IX IV XI I II III IX IV IV I XII II XII X XII I VII VI VII VIII I II II II VI X III DQ249350 DQ249392 DQ249399 DQ249419 DQ249377 DQ249370 DQ249453 DQ249380 DQ249437 DQ249433 DQ249371 DQ249427 DQ249375 DQ249395 DQ249348 DQ249445 DQ249389 DQ249402 DQ249354 DQ249390 DQ249446 DQ249415 DQ249434 DQ249410 DQ249358 DQ249381 DQ249356 DQ249451 DQ249450 DQ249352 DQ249398 DQ249368 DQ249393 DQ249432 DQ249360 DQ249430 DQ249388 DQ249386 DQ249407 DQ249357 DQ249376 DQ249378 DQ249435 DQ249367 DQ249423 DQ249412 DQ249422 DQ249416 DQ249425 DQ249379 DQ249417 DQ249449 DQ249428 DQ249397 DQ249365 DQ249373 DQ249458 DQ249411 251/260 183/190 310/313 133/140 269/272 176/180 325/333 296/304 272/277 196/113 286/292 221/229 195/197 193/195 266/269 299/301 239/247 251/257 199/201 217/223 243/251 299/302 215/217 156/158 210/214 260/268 199/201 211/220 190/202 259/273 232/251 292/296 194/198 275/278 213/219 307/313 259/282 137/140 259/261 289/294 255/259 307/309 199/206 209/214 304/316 302/304 212/215 313/316 208/212 151/162 343/347 272/277 306/319 226/244 278/289 308/312 272/282 192/194 624/633 524/528 173/178 AGGTGCAATTACCGATCCAG GCCAGGTCAGAAAATTGGAA ATTCTTTTGCCCCCTTTGAC GCAACCAGAAAGGGAGAGTG CTCGTCCAGCTCTCTGCTCT CTGGCTCATCCACTCACTCA AAAAGGGAAACGTTCGAGGT TATGCACGCGTATCCTTGAA CCTGTAGGGAAAACACCCAA TCGACAACTACAACAACGCC GCACAGTCAGGAATGGGATT CGAGCACACGTTCTTTCTCA TATCGATCCCACTTTACGGC CGCTCTGCTTAATACGGTCC TTCATAGGGGGTGAGACTGC TTGACCTCTCATCCCCACTC CGAAGCGGTGGAGAAAAATA TGTGTCTGGGCTACCAACTG TAATAATGGACCCATCGGGA ATCCCGTTTTGCTTCTCTCA ATTTTCGATGGTGAAGACGG TCTCTGCGGATGACACACTC GACCCTGGCTGTGCTGTAAT GACGCGGTCAACCTGTTC TTTGTATCCTCGGCGTAAGG GCTTCGGTACACGACCAAAT ACACGTTCCGCGAATCTAAC TCTCGACGAGGTGTTGACAG GCCAGTAATTGAGCCTCCAG GGCGTTTGAATTAACCGAGA AGCTTCACCAAGGCAAAGAA GCCTTTGAGAGAAGATCGGA AATTCAATGAAATCCACGCC ACATTCGGAGGGTCATGAAG AAGGACGACATCTGGCAATC GTTCTGCTGACCCAATTGCT CCACCAACCGACGCTATAAT CTCAAGGCTCACCAGAGGAC CAATATTCGTCTTCCTCCGC TCACGCCCACAAGATGTAAA CACGTGACCGTTGTTTTGAC CCCCTACACCACTCATGTCC ACGAGCTGCAGGTCAGAGAT CGGGCCAATACTTATGTCGT GACTTGAACGAGTCTTGCCC ACGTCCAGTTTGCCTCAATC TTCTAGCTAACCGCCAGGTG GCAAAACCCCCTACAAAACA GTCGACGAGATGGGAATGTT GTGAACCCAACCGAGACAGT CCAACAGTGGAAAAGCCATT TGCCATATATGTTGCTTGCG ATAGCCACCGGTGTAGATGG CAGCAGCCATTTAGGAGGAG AATTTCGCATATGCTTTGGC TATCACGGACATCGTGTGGT GGATTTCCCCCTTACCAAAA TCACCGGCTTCTTTCTTTTC ATTGCTCTGGCCGTTACAAG TCAAGTACAAAACCTCCTTTCAA TCGTTATGGCAACAGTCGAG CAGCAGAAGGTGGAATGACA AGAGACGCCAAAGTGAAGGA TGCTACCCGGGTTAAGAAGA TCCAAATCTCCACCAACAGA CCTACGATAACAGGCCGAAA TCCTCTATGCACACTGGTGG GGACGTTTCGCAGAAAAGAG GCGTTCTTCTTCCGCTTATG ACAGCAGAGCACAGCACATC ATTTGAATTTTGCTGCCGAC TGATTCCACAAAGCCAACAA CGCACGTTAATCACCGAATA CTGGCCACCATCAGACTTTT AATGTCCCCCATGCATTAAA GGGTGACGCAAAAGAAAGAG AGTCCCAGCCACACAGGTAG ACCAGTCCGAGATTTATGCG TGAAGAAAACCGGAGACGAC GGAAATTGTCCGTCCTTTCA TATCTTCATCCATCCTCCGC CAGTGTTCCACAAGTGTCCG CGATGAATTGACGACGTGAC CGCATGCAGTAATGGAGCTA CTCATCCGCTGTCTCATTCA TTCCTATTCCAAATGGTCGC ACTGTTCGGTTGCTTCGAGT GATGTGATGACCAACAACGG TGGCGCAGTAGAAAATGTTG CCGTTTCTGTCCAAAAGGAA CAAAGTGCGCTGTTCCACTA GCTTGCTGGTTGCTGTTGTA CCTTGGAGGCAAATGAAAA CCATGACCATAAGTGGGTCC GGAGCCAGTTGAGAGCAAAG AATCGATCAGAACCGACACC GCCGTAAGGTTATTACGCGA CGAACGACAAGCGAGTGATA GGTCTCTCAAGTCGACCAGC AATGTGTCAATGCGCAACAT TCCTTCTGCTGTCCGCTATT GTCTACATACAAGGGGCGGA TAAGTTATCCGGTCCGATGC GCGTGTGTGTACCGGTGTAG GATGTGCCATCAGTTGAACG ACCTACGCCTGGTCATCAAC GGATGACTAAATCCGCTCCA TGCGAGAGAGAAAACACACG TACCCCCACCAAGAGATTCA CGAAAATCCCAGGAAATCAA CCGGGGAATCAATGTTACAC CACGCAGAAAGAGCATTCAA AGGAAAGAGACAGACTGGCG ACGTAAAAAGGGGATACGCA GGCCGAGTTGTCTTGTGTTT TTCACGTTGTGTCCCTTTGA ATGGTTTCCCCTTTTGCTCT GATTCAGCGGGAAAAATTCA CTGGACCATCATGGGTTTTC AACGGTCTCGGATTTCTCCT CCACAATAGGTGTATTCTTGGAAC AACTTTCCGACCGGTTTCTT 424 M.E.A. Cristescu et al. / Genomics 88 (2006) 415–430 Appendix B. List of putative homologs Daphnia E value Marker Gene ID Lk Distance from closest marker d076 Dp564a Dp564b Dp564c Dp589a Dp589b Dp1290a Dp1290b Dp199a Dp199b Dp199c Dp199d Dp571a Dp571b Dp884a Dp884b Dp884c Dp884d Dp1073a Dp1073b Dp553a Dp553b Dp553c Dp553d Dp802a Dp802b Dp802c Dp1495a Dp1495b Dp1495c Dp1495d Dp1189a Dp1189b Dp300a Dp300b Dp300c Dp1368a Dp1368b Dp1368c Dp149a Dp149b Dp149c Dp149d Dp754a Dp754b Dp754c Dp754d Dp655a Dp655b Dp655c Dp74a Dp74b Dp74c Dp74d Dp1155a Dp1155b Dp1195a Dp1195b Dp1195c Dp957a Dp957b I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I 190.5 202.5 –17,065 9324.5 9311 –8936.5 –9023.5 27,065 25,031.5 –17,445.5 –23,100 25,700.5 –13,319 4669 4706.5 –5988.5 –8336 –26,589 –59,034.5 32,439 –2393 –32,572.5 –83,360 15,728 –9214 –16,655.5 2553 207 –2733.5 –8001 –7020.5 –16,057 22,026 –53,458 –107,243 18,981 15,315.5 –14,648.5 3492.5 8360 –82,749 –89,930.5 25,450 20,070 –18,863 –61,827 15,999 15,897 –5332 64,023.5 45,856.5 –3672 –3651 135,223.5 133,927 6819 –11,925 31,409.5 19,149.5 10,729 d098 d170 d048 d096 d114 d181 d134 d101 d063 d193 d053 d163 d001 d130 d091 d007 d148 d188 d138 8E–14 1E–12 7E–17 1E–31 1E–26 4E–13 9E–17 1E–13 3E–11 9E–20 1E–38 4E–61 7E–24 3E–37 8E–30 2E–53 2E–53 7E–44 4E–80 9E–15 9E–30 3E–18 7E–30 0 2E–11 7E–27 3E–65 5E–40 6E–17 0 8E–19 5E–18 2E–44 2E–36 2E–105 2E–30 2E–47 2E–53 2E–25 3E–11 7E–50 3E–37 9E–43 3E–45 2E–141 4E–19 5E–72 1E–35 1E–18 2E–11 5E–17 3E–34 2E–52 1E–36 2E–61 1E–18 3E–86 2E–82 2E–18 1E–14 Bit score 78 74 64 137 121 75 87 77 70 99 84 237 100 157 132 185 122 127 300 80 131 93 132 461 70 106 231 144 87 752 95 92 110 152 136 106 127 211 90 66 156 154 72 185 197 95 234 104 91 70 90 146 206 152 236 93 171 257 72 65 Drosophila Gene ID Cytology CG32770-PA CG3367-PA CG11212-PA CG4427-PA CG3065-PA CG17198-PA CG17197-PA CG14780-PA CG31873-PA CG5411-PA CG18104-PA CG10952-PA CG32532-PA CG11202-PA CG6604-PA CG8003-PA CG9633-PA CG3045-PA CG3896-PA CG17029-PA CG4637-PA CG32593-PA CG8376-PA CG31671-PA CG1756-PA CG6391-PA CG11949-PA CG1228-PD CG8441-PA CG3725-PB CG5590-PA CG7887-PA CG13348-PA CG17187-PA CG6137-PA CG7831-PA CG4212-PB CG12758-PA CG33041-PA CG14698-PA CG32654-PC CG7359-PA CG31860-PA CG8787-PA CG5594-PD CG7452-PA CG11870-PA CG6114-PA CG8627-PA CG7420-PA CG5155-PA CG5069-PA CG3668-PA CG32072-PA CG33110-PA CG2108-PA CG9318-PA CG32592-PA CG10237-PB CG7231-PB X X 2R 2L 2R 3R 3R X 2L 2R X X X X 2L 3L 3R 2R 2R 3L 3R X 2R 2L X 3L 2R 3L 2R 2R 3R 3R 2R 3R 2L 3R 2L 2R 2R 3R X X 2L 2R 2R 3L 3R 3L 3L 2L 2L 3L 2R 3L 3R 3R 2L X 2L 2L M.E.A. Cristescu et al. / Genomics 88 (2006) 415–430 425 Appendix B (continued ) Daphnia Marker Gene ID Lk Distance from closest marker d197 Dp1048a Dp1048b Dp1048c Dp1048d Dp725a Dp725b Dp848a Dp848b Dp848c Dp967a Dp967b Dp967c Dp785a Dp785b Dp785c Dp742a Dp742b Dp1497a Dp1497b Dp1494a Dp1494b Dp821a Dp821b Dp325a Dp325b Dp325c Dp321a Dp321b Dp321c Dp395a Dp395b Dp147a Dp147b Dp1056a Dp1056b Dp1056c Dp1056d Dp224a Dp224b Dp224c Dp557a Dp557b Dp557c Dp557d Dp117a Dp117b Dp117c Dp117d Dp1346a Dp1346b Dp1346c Dp1346d Dp308a Dp308b Dp71a Dp71b Dp71c Dp71d Dp572a Dp572b II II II II II II II II II II II II II II II II II II II II II II II II II II II II II II II II II II II II II II II II II II II II II II II II II II II II III III III III III III III III 56,229.5 48948 –80630 –87140.5 52270 42399.5 71981 –8424 –8578.5 5339 –2648 –11117.5 26949 11729.5 –39510.5 –152051 –167340 21739.5 108988.5 1273.5 –157339 21056 17434.5 16654 4725.5 –12084 –4395 –12581.5 –36222.5 219974.5 217175 –147333 –147333 15914 8665 –10642.5 –17949 762.5 –23129.5 –23321.5 9498 5901.5 –3713.5 –21283.5 17754 10235.5 –94337.5 –96940 23530.5 381 –8928.5 –12343.5 –11527.5 –68392 14823.5 11127.5 –20793.5 –21960.5 –11633.5 –11639.5 d102 d112 d140 d095 d104 d123 d044 d109 d070 d002 d047 d015 d183 d069 d079 d124 d162 d067 d010 d097 E value Bit score 3E–66 0 8E–31 7E–24 1E–25 5E–27 9E–11 1E–85 3E–50 4E–133 7E–88 3E–32 2E–36 6E–145 7E–57 5E–33 2E–68 9E–21 2E–22 6E–47 6E–17 6E–21 5E–26 2E–11 3E–53 8E–17 8E–108 2E–38 5E–39 9E–28 5E–32 2E–33 3E–22 9E–77 4E–30 2E–11 2E–23 2E–48 4E–54 6E–19 7E–39 4E–39 3E–22 4E–13 9E–53 4E–86 3E–49 2E–58 4E–25 1E–53 4E–73 2E–15 5E–20 5E–41 1E–22 4E–28 5E–15 8E–26 7E–38 3E–26 172 763 135 95 97 111 69 317 201 200 327 85 152 309 187 134 70 62 89 186 60 50 119 72 160 88 394 163 164 82 88 143 107 114 115 70 70 195 213 95 83 162 106 77 172 318 168 113 71 144 276 62 101 142 107 125 79 87 159 119 Drosophila Gene ID Cytology CG3335-PA CG32659-PA CG4482-PA CG30077-PA CG2968-PA CG5586-PB CG13338-PA CG10037-PA CG12287-PB CG7729-PA CG9932-PA CG18735-PA CG15455-PA CG1973-PA CG12287-PB CG4896-PC CG3057-PA CG16988-PA CG5708-PA CG13880-PA CG7861-PA CG3388-PA CG8246-PA CG31868-PA CG11396-PA CG32843-PA CG11895-PA CG17941-PA CG6977-PA CG7484-PB CG32486-PD CG5893-PA CG18024-PA CG2248-PA CG32296-PA CG6398-PA CG7058-PA CG7245-PA CG13758-PA CG12370-PA CG4980-PA CG5502-PA CG11324-PB CG4096-PA CG6661-PA CG3576-PA CG1316-PA CG4802-PA CG14435-PA CG8127-PB CG6502-PA CG4293-PA CG31772-PA CG1147-PA CG8882-PA CG12524-PA CG32854-PA CG10447-PA CG33473-PB CG4427-PA 3L X 2L 2R X 3R 2R 3L 2L 3L 2L 2R X 3R 2L 2L 2L 3L 2L 3L 2R 2R 2R 2L 3L 2R 2R 2L 3R 3L 3L 3L 2L 3L 3L X X 2L X 2R 3R 3R 2L X 3L X 3L 2R X 3L 3L X 2L 3R 2L 3L 3R 2L 2R 2L (continued on next page) 426 M.E.A. Cristescu et al. / Genomics 88 (2006) 415–430 Appendix B (continued ) Daphnia Marker Gene ID Lk Distance from closest marker d169 Dp1058a Dp1058b Dp1058c Dp1058d Dp581a Dp581b Dp1276a Dp1276b Dp1276c Dp1276d Dp24a Dp24b Dp24c Dp50a Dp50b Dp50c Dp616a Dp616b Dp616c Dp337a Dp337b Dp137a Dp137b Dp770a Dp770b Dp770c Dp144a Dp144b Dp144c Dp813a Dp813b Dp530a Dp530b Dp530c Dp530d Dp1041a Dp1041b Dp1041c Dp675a Dp675b Dp311a Dp311b Dp311c Dp1311a Dp1311b Dp1311c Dp1372a Dp1372b Dp1372c Dp605a Dp605b Dp605c Dp687a Dp687b Dp687c Dp878a Dp878b Dp878c Dp878d Dp924a Dp924b Dp924c III III III III III III III III III III III III III III III III III III III III III III III III III III III III III III III III III III III III III III IV IV IV IV IV IV IV IV IV IV IV IV IV IV IV IV IV IV IV IV IV IV IV IV 52101 9846 –5671 –27067.5 28718 –7459 12613 2226 –8114.5 –18421 3262 3166 –68468 39212.5 4067.5 –30719 38810 41379 –38333 8886 –11791 34639 –6913 6447 –17856 –13992 28708.5 25622.5 24421 110323 9902 13177 7064 –75127.5 –78117.5 3800 1565 –4048 –72164.5 –133679 38474.5 3023 –8461 26980 18589 –46309.5 24744.5 –3219.5 –26742.5 17114.5 –92654 –92628.5 13888.5 10037.5 –33502.5 79044 28568.5 –24207.5 –32396.5 13882 8373 –16436 d082 d177 d003 d122 d078 d019 d041 d094 d049 d108 d075 d147 d089 d071 d156 d168 d081 d084 d116 d139 E value Bit score 6E–19 2E–30 3E–27 4E–80 8E–18 1E–38 5E–19 2E–144 2E–26 2E–76 2E–51 3E–54 1E–58 8E–44 0 6E–139 1E–26 1E–17 2E–18 6E–70 4E–143 9E–24 2E–99 2E–34 8E–47 6E–22 3E–13 6E–75 1E–19 3E–107 5E–92 6E–14 8E–31 4E–44 4E–20 3E–11 6E–65 4E–11 2E–58 8E–21 5E–32 2E–38 6E–29 3E–13 8E–58 3E–102 5E–43 3E–32 4E–27 7E–54 7E–15 6E–40 2E–12 0 7E–30 5E–53 1E–94 5E–51 0 2E–24 6E–25 1E–47 95 103 124 205 82 164 98 515 72 138 156 162 192 151 275 136 121 91 95 264 308 112 367 148 190 107 52 201 99 390 341 64 136 132 63 62 249 70 206 72 125 108 125 49 156 276 171 140 123 211 82 165 50 474 132 124 348 203 424 115 115 98 Drosophila Gene ID Cytology CG12096-PA CG8913-PA CG8967-PA CG8274-PA CG3738-PA CG9907-PA CG9071-PB CG9907-PA CG6632-PA CG11093-PA CG7293-PA CG10642-PA CG13567-PA CG1099-PA CG32096-PB CG32823-PB CG14575-PA CG9918-PC CG31643-PA CG10160-PA CG8983-PA CG10421-PA CG7749-PA CG31690-PA CG6445-PA CG4509-PB CG5454-PA CG30421-PA CG5798-PA CG13900-PA CG1449-PA CG12943-PA CG32180-PB CG8070-PA CG13533-PA CG3251-PA CG1951-PA CG5053-PA CG1810-PA CG3026-PA CG14885-PA CG33135-PA CG7301-PA CG11077-PA CG13188-PA CG3011-PA CG5177-PA CG3048-PA CG31794-PA CG1434-PA CG31392-PA CG3956-PA CG31251-PA CG7908-PA CG33227-PB CG9601-PA CG12630-PA CG31612-PA CG11579-PA CG3291-PA CG7404-PB CG12908-PB X 3R 2R 2R 2L X 2R X X 4 3L 3L 2R 2L 3L X 3L 3R 2L 3L 2R 3R 3L 2L 3L 3R 3R 2R 3R 3L 4 2R 3L 2R 2R 2L 3R 3R X X 3R 2R 3R 4 2R X 2L 2L 2L X 3R 2L 3R 3R 2R 3R 2L 2L X X 3L 2R M.E.A. Cristescu et al. / Genomics 88 (2006) 415–430 427 Appendix B (continued ) Daphnia Marker Gene ID Lk Distance from closest marker d179 Dp1376a Dp1376b Dp78a Dp78b Dp78c Dp1185a Dp1185b Dp1185c Dp779a Dp779b Dp779c Dp779d Dp830a Dp830b Dp830c Dp830d Dp143a Dp143b Dp1409a Dp1409b Dp1409c Dp1396a Dp1396b Dp1396c Dp838a Dp838b Dp91a Dp91b Dp91c Dp91d Dp240a Dp240b Dp240c Dp231a Dp231b Dp231c Dp231d Dp231e Dp231f Dp319a Dp319b Dp721a Dp721b Dp721c Dp648a Dp648b Dp648c Dp632a Dp632b Dp632c Dp632d Dp170a Dp170b Dp642a Dp642b Dp298a Dp298b Dp1040a Dp1040b Dp985a Dp985b Dp985c Dp985d IV IV IV IV IV IV IV IV IV IV IV IV IV IV IV IV IV IV IV IV IV IV IV IV V V V V V V V V V V V V V V V V V V V V V V V V V V V VI VI VI VI VI VI VI VI VI VI VI VI –3973 –28672 38541 33408.5 –8539.5 40877 –12647.5 –11501 13615 9052.5 –22483.5 –30722 8076 –7733.5 –34552.5 –36094 37275.5 –126653 18790 –3003.5 –42284.5 16648 13223.5 –29271.5 52613.5 17672.5 55597 3088.5 –5328.5 –11690 2597.5 –9348 –13927.5 35164 –62561.5 –137939 25412 3396.5 –7972 –63727 –109689 10441 7425.5 –33049 34072.5 –9844 –28493 85367.5 35435 –3190 –18027 47966 4888.5 8130 –1233.5 23948 19955.5 –2428.5 –11258 39883.5 29575 –6196.5 –7143 d057 d155 d105 d106 d018 d180 d172 d126 d013 d031 d024 d030 d093 d087 d119 d020 d085 d025 d142 d135 E value Bit score 4E–58 1E–122 9E–30 9E–41 2E–14 1E–38 9E–98 2E–25 2E–42 3E–126 1E–18 1E–18 6E–44 1E–29 2E–12 6E–21 0 2E–45 4E–31 9E–29 6E–31 3E–92 1E–139 3E–32 5E–16 0 4E–43 4E–28 0 1E–27 1E–18 6E–84 2E–65 5E–98 6E–21 3E–30 4E–14 6E–40 2E–104 3E–17 1E–96 1E–17 1E–63 7E–17 4E–18 3E–16 3E–69 3E–61 2E–13 2E–72 1E–119 3E–139 5E–84 1E–38 1E–138 2E–69 1E–24 7E–61 4E–28 9E–136 5E–19 2E–14 0 147 316 89 101 82 162 182 94 124 452 85 94 138 131 56 71 233 71 135 128 93 196 218 116 87 195 143 126 550 125 95 108 123 205 104 100 79 166 304 55 152 67 246 89 89 87 198 176 75 181 163 310 129 119 306 154 102 110 125 301 96 80 716 Drosophila Gene ID Cytology CG7323-PA CG31729-PB CG8201-PA CG11376-PA CG8949-PA CG31304-PA CG7913-PB CG32568-PA CG7619-PA CG2017-PA CG31842-PA CG6530-PA CG10733-PA CG6187-PA CG8407-PA CG9705-PA CG2637-PA CG11236-PA CG7383-PA CG4717-PA CG5352-PA CG6388-PA CG7415-PC CG3756-PA CG16932-PA CG2999-PB CG15218-PA CG13287-PA CG5033-PA CG11798-PA CG32137-PB CG6969-PA CG5585-PA CG9191-PA CG16779-PA CG9717-PA CG15553-PA CG31721-PA CG10639-PA CG8383-PA CG1598-PA CG10198-PA CG10198-PA CG31646-PA CG31779-PA CG4853-PA CG7369-PA CG2864-PA CG14469-PA CG2316-PA CG2845-PA CG10080-PA CG10754-PA CG2061-PA CG6335-PB CG2827-PA CG8965-PA CG9379-PA CG10075-PA CG8344-PA CG6476-PA CG5810-PA CG8896-PA 3L 2L 2R 2L X 3R 3R X 3L 3R 2L 2R 3L 2L 2R 3L 2L 2L 3L 3L 2L 2L 3R 2L 2R 4 2L 3L 2R 2R 3L 3R 3L 3L 3R 3R 3R 2L 2L 3R 2R 3R 3R 2L 2L 2R 3L X 2R 4 X 2R 3L X X 2R 2L 3R 3L 2R 3R 3R 2R (continued on next page) 428 M.E.A. Cristescu et al. / Genomics 88 (2006) 415–430 Appendix B (continued ) Daphnia Marker Gene ID Lk Distance from closest marker d190 Dp1399a Dp1399b Dp361a Dp361b Dp385a Dp385b Dp385c Dp385e Dp1327a Dp1327b Dp1327c Dp1350a Dp1350b Dp1328a Dp1328b Dp1328c Dp112a Dp112b Dp867a Dp867b Dp1300a Dp1300b Dp1347a Dp1347b Dp156a Dp156b Dp156c Dp53a Dp53b Dp142a Dp142b Dp559a Dp559b Dp559c Dp559d Dp887a Dp887b Dp887c Dp1493a Dp1493b Dp1351a Dp1351b Dp1351c Dp1278a Dp1278b Dp1278c Dp1278d Dp1309a Dp1309b Dp1309c Dp1325a Dp1325b Dp1325c Dp1325d Dp330a Dp330b Dp330c Dp330d Dp660a Dp660b Dp660c Dp696a Dp696b VI VI VI VI VI VI VI VI VI VI VI VI VI VII VII VII VII VII VII VII VII VII VII VII VII VII VII VIII VIII VIII VIII VIII VIII VIII VIII VIII VIII VIII VIII VIII VIII VIII VIII IX IX IX IX IX IX IX IX IX IX IX IX IX IX IX IX IX IX X X –1017.5 –1271 5524.5 5499 21330 21321 –26501.5 –27266.5 36898 –50400.5 –100573 37195.5 29528 17411.5 –719.5 –23947.5 5916.5 –3182.5 1371.5 –4314.5 –4460.5 –6004.5 –3925 –55154.5 27339.5 25583.5 –52957.5 –1204 –50894 88658 40984 53796.5 53780 –2070.5 –2067.5 92744.5 15464 –24426 7055.5 6111.5 72150 –6458 –6479 2824.5 2818.5 –19811 –24238.5 35445 –16322.5 –25927.5 6561.5 3599 –2632.5 –9520 34298.5 3722 –14486 –31731.5 32427 19668 –16563.5 –1916.5 –15365 d073 d028 d152 d153 d157 d058 d107 d166 d189 d027 d068 d065 d077 d117 d045 d192 d178 d171 d145 d043 d088 d127 E value Bit score 1E–20 6E–26 8E–62 5E–68 9E–19 9E–31 3E–14 1E–10 7E–49 5E–19 3E–44 5E–32 1E–78 4E–38 7E–13 0 2E–63 1E–61 4E–81 5E–61 1E–62 1E–14 1E–43 6E–21 3E–20 2E–12 1E–20 6E–22 5E–81 8E–34 1E–39 7E–26 3E–26 2E–32 6E–16 2E–48 2E–50 2E–84 2E–27 2E–25 2E–21 5E–40 2E–89 2E–23 2E–13 1E–46 1E–45 5E–11 1E–125 2E–54 2E–42 9E–47 1E–17 5E–75 2E–26 1E–56 7E–28 2E–32 6E–16 3E–14 9E–54 1E–75 2E–20 101 118 239 259 94 136 81 68 196 67 101 139 138 144 75 355 157 207 171 119 102 80 179 73 100 73 102 77 132 145 104 118 120 140 83 151 201 313 120 57 104 167 282 107 73 187 134 68 453 164 175 189 90 199 84 199 127 140 62 81 138 142 101 Drosophila Gene ID Cytology CG31543-PC CG30036-PA CG4125-PA CG3653-PA CG14305-PA CG3105-PA CG6324-PA CG8994-PA CG9650-PB CG3817-PA CG3633-PA CG2977-PA CG7035-PA CG32920-PB CG2851-PA CG2747-PA CG8282-PA CG17923-PA CG9738-PA CG33304-PA CG1100-PA CG32147-PA CG32577-PA CG32578-PA CG5488-PA CG6545-PA CG5488-PA CG7902-PA CG10220-PA CG6488-PA CG3373-PA CG9428-PA CG6898-PA CG7535-PA CG6112-PA CG5970-PA CG2102-PA CG3157-PA CG9344-PA CG5846-PA CG7121-PA CG3228-PA CG3225-PA CG6870-PA CG3566-PB CG9175-PA CG8400-PA CG3672-PA CG15288-PB CG7269-PA CG14120-PA CG11887-PA CG15604-PA CG9163-PA CG4787-PA CG10693-PB CG10693-PB CG32423-PB CG9109-PA CG12290-PA CG6551-PA CG8205-PD CG4713-PA 3R 2R X X 3R 2R X 2R X 3R 2R X X 3R 2L 3R 2L 4 3R 2L 3R 3L X X X 3R X 3R 2R 2L 3R 2R 3R 3R 3L 2R 3R 2L 2R 2L 2L X 2L 2L X 2L 2R 3L 2L 2L 3L 2R X X 3R 3R 3R 3L 2L 3R X 2R 2L M.E.A. Cristescu et al. / Genomics 88 (2006) 415–430 429 Appendix B (continued ) Daphnia Marker Gene ID Lk d023 Dp460a Dp460b Dp460c Dp304a Dp304b Dp1496a Dp1496b Dp1302a Dp1302b Dp1057a Dp1057b Dp1057c Dp1057d Dp641a Dp641b Dp641c Dp641d Dp808a Dp808b Dp808c Dp808d Dp70a Dp70b Dp70c Dp70d Dp1112a Dp1112b Dp1112c Dp936a Dp936b Dp1144a Dp1079b Dp1079c Dp1079d X X X X X X X X X X X X X X X X X XI XI XI XI XI XI XI XI XI XI XI XII XII XII XII XII XII d034 d072 d161 d186 d083 d092 d006 d173 d137 d182 E value Bit score 2E–19 4E–21 3E–14 7E–19 9E–12 9E–76 1E–12 7E–18 1E–73 7E–66 6E–97 7E–32 8E–28 2E–38 4E–25 5E–25 1E–60 1E–84 5E–71 7E–31 2E–155 0 8E–133 3E–81 5E–138 9E–59 7E–86 2E–21 5E–103 4E–71 4E–15 2E–22 6E–91 1E–112 58 103 79 48 70 285 77 94 200 253 357 138 73 124 115 113 212 315 269 136 168 222 475 303 233 230 178 102 375 182 84 104 338 410 Distance from closest marker 51284.5 7620.5 –86107.5 13685 12564.5 38824.5 20675 –7307 –34144 49005 48972 –5131 –10203.5 39475.5 5580 –15435.5 –20074 40318 40274.5 –11911.5 –14853.5 82401 46862.5 –33190 –46643.5 24553.5 9834 –16578 –52736 –54685 5402.5 22188 10770.5 –4970 References [1] P.D.N. Hebert, Cladocera as model systems in biology, J. Exp. Mar. Biol. Ecol. 209 (1997) 310–311. [2] F. Zaffagnini, Reproduction in Daphnia, in: R.H. Peters, R. De Bernardi (Eds.), Daphnia, . Memorie dell' Istituto Italiano di Idrobiologia, 45, 1987, pp. 245–284. [3] M.J. Beaton, P.D.N. Hebert, Variation in chromosome number of Daphnia (Crustacea, Cladocera), Hereditas 120 (1994) 275–279. [4] E.M. Rasch, DNA “standards” and the range of accurate DNA estimates by Feulgen absorption microspectrophotometry, in: R.R. Cowden, S.H. Harrison (Eds.), Advances in Microscopy, A. R. Liss, New York, 1985, pp. 137–166. [5] L. Rieseberg, C.A. Buerkle, Genetic mapping in hybrid zones, Am. Nat. 159 (2002) 36–50. [6] N.G. Copeland, N.A. Jenkins, D.J. Gilbert, J.T. Eppig, L.J. Maltais, J.C. Miller, W.F. Dietrich, A.W. Stephen, E. Lincoln, R.G. Steen, L.D. Stein, J.H. Nadeau, E.S. Lander, A genetic linkage map of the mouse: current applications and future prospects, Science 262 (1993) 57–66. [7] S.J. O’Brien, M. Menotti-Raymond, W.J. Murphy, W.G. Nash, J. Wienberg, R. Stanyon, N.G. Copeland, N.A. Jenkins, J.E. Womack, J.A.M. Graves, The promise of comparative genomics in mammals, Science 286 (1999) 458–479. [8] K. Wilson, Y. Li, V. Whan, S. Lehnert, K. Byrne, S. Moore, S. Pongsomboon, E. Ballment, Z. Fayazi, J. Swan, M. Kenway, J. Benzie, Genetic mapping of the black tiger shrimp Penaeus monodon with amplified fragment length polymorphism, Aquaculture 204 (2002) 297–309. Drosophila Gene ID Cytology CG4210-PA CG17117-PC CG5646-PA CG33088-PA CG10365-PA CG8833-PA CG10122-PA CG5406-PB CG5406-PB CG17209-PA CG10122-PA CG2328-PA CG6009-PA CG6643-PB CG18769-PA CG14145-PA CG6378-PA CG9355-PA CG15013-PA CG9333-PA CG4063-PA CG11337-PA CG5685-PA CG1119-PA CG5222-PA CG7050-PA CG8200-PB CG14270-PA CG32281-PA CG1837-PA CG10421-PA CG1319-PA CG11895-PA CG11895-PA 3R 3R 3R 3L 3R 3L 2R 3L 3L X 2R 2R 3R 3R 3L 3L 3R X 3L 2L 2L 3R 3R 3R 3L 3R 2R X 3L X 3R 3L 2R 2R [9] F. Perez, C. Erazo, M. Shinaula, F. Volckaert, J. Calderon, A sex-specific linkage map of the white shrimp Penaeus (Litopenaeus) vannamei based on AFLP markers, Aquaculture 242 (2004) 105–118. [10] G. Toth, Z. Gaspari, J. Jurka, Microsatellites in different eukaryotic genomes: survey and analysis, Genome Res. 10 (2000) 967–981. [11] L. Fishman, A.J. Kelly, E. Morgan, J.H. Willis, A genetic map in the Mimulus guttatus species complex reveals transmission ratio distortion due to heterospecific interactions, Genetics 159 (2001) 1701–1716. [12] A. Chakravarti, L.K. Lasher, J.E. Reefer, A maximum likelihood method for estimating genome length using genetic linkage data, Genetics 128 (1991) 175–182. [13] P. Keim, J.M. Schupp, S.E. Travis, K. Clayton, D.M. Webb, A highdensity soybean genetic map based upon AFLP markers, Crop Sci. 37 (1997) 537–543. [14] W.P. Young, P.A. Wheeler, V.H. Coryell, P. Keim, G.H. Thorgaard, A detailed linkage map of rainbow trout produced using doubled haploids, Genetics 148 (1998) 839–850. [15] S.J. O’Brien, J. Wienberg, L.A. Lyons, Comparative genomics: lessons from cats, Trends Genet. 13 (1997) 393–399. [16] C. Dib, S. Faure, C. Fizames, D. Samson, N. Drouot, et al., A comprehensive genetic map of the human genome based on 5,264 microsatellites, Nature 380 (1996) 152–154. [17] W. Dietrich, J. Miller, R. Steen, M. Merchan, D. Damron-Boles, et al., A comprehensive genetic map of the mouse genome, Nature 380 (1996) 149–152. [18] J. Gadau, C.U. Gerloff, N. Krüger, H. Chan, P. Schmid-Hempel, A. 430 [19] [20] [21] [22] [23] [24] [25] [26] [27] [28] [29] [30] [31] [32] [33] M.E.A. Cristescu et al. / Genomics 88 (2006) 415–430 Wille, R.E. Page, A linkage analysis of sex determination in Bombus terrestris (L.) (Hymenoptera: Aphidae), Heredity 87 (2001) 234–242. M. Solignac, D. Vautrin, E. Baudry, F. Mougel, A. Loiseau, J.-M. Cornuet, A microsatellite-based linkage map of the honeybee, Apis mellifera L, Genetics 167 (2004) 253–262. M. Lynch, The origin of eukaryotic gene structure, Mol. Biol. Evol. 23 (2006) 450–468. Y. Xu, L. Zhu, J. Xiao, N. Huang, S.R. Mccouch, Chromosomal regions associated with segregation distortion of molecular markers in F2 backcross, doubled haploid, and recombinant inbred populations in rice (Oryza sativa L.), Mol. Gen. Genom. 253 (1997) 535–545. Y.D. Tan, C. Wan, Y. Zhu, C. Lu, Z. Xiang, H.W. Deng, An amplified fragment length polymorphism map of the silkworm, Genetics 157 (2001) 1277–1284. H. Lu, J. Romero-Serson, R. Bernardo, Chromosomal regions associated with segregation distortion in maize, Theor. Appl. Genet. 105 (2002) 622–628. T.W. Lyttle, Cheaters sometimes prosper: distortion of Mendelian segregation by meiotic drive, Trends Genet. 9 (1993) 205. H.W. Deng, M. Lynch, Inbreeding depression and inferred deleteriousmutation parameters in Daphnia, Genetics 147 (1997) 147–155. L. De Meester, Inbreeding and outbreeding depression in Daphnia, Oecologia 96 (1993) 80–84. D.J. Innes, Genetics of Daphnia obtusa: genetic load and linkage analysis in a cyclical parthenogen, J. Hered. 80 (1989) 6–10. D.J. Mckillen, Y.A. Chen, C. Chen, M.J. Jenny, H.F. Trent, J. Robalino, D.C. Mclean, J.S. Gross, R.W. Chapman, G.W. Warr, J.S. Almeida, Marine genomics: a clearing-house for genomic and transcriptomic data of marine organisms, BMC Genom. 6 (2004) 34. J.B. Roethele, J. Romero-Severson, J.L. Feder, Evidence for broadscale conservation of linkage map relationships between Rhagoletis pomonella (Diptera: Tephritidae) and Drosophila melanogaster (Diptera: Drosophilidae), Ann. Entomol. Soc. Am. 94 (2001) 936–947. Z. Trachtulec, J. Forejt, Synteny of orthologous genes conserved in mammals, snake, fly, nematode, and fission yeast, Mamm. Genome 12 (2001) 227–231. M.R. Ranz, C. Ferran, A. Ruiz, How malleable is the eukaryotic genome? Extreme rate of chromosomal rearrangement in the genus Drosophila, Genome Res. 11 (2001) 230–239. H. Zhu, D.-J. Kim, J.-M. Baek, H.-K. Choi, L.C. Ellis, H. Kuester, W.R. Mccombie, H.-M. Peng, D.R. Cook, Syntenic relationships between Medicago truncatula and Arabidopsis reveal extensive divergence of genome organization, Plant Physiol. 131 (2003) 1018–1026. D. Durand, D. Sankoff, Test for gene clustering, J. Comput. Biol. 10 (2003) 453–482. [34] D. Pisani, L.L. Poling, M. Lyons-Weiler, S.B. Hedges, The colonization of land by animals: molecular phylogeny and divergence times among arthropods, BMC Biol. 2 (2004) 1. [35] J.J. Doyle, J.L. Doyle, A rapid DNA isolation procedure for small quantities of fresh leaf tissue, Phytochem. Bull. 19 (1987) 11–15. [36] K. Schwenk, A. Sand, M. Boersma, M. Brehm, E. Mader, D. Offerhaus, P. Spaak, Genetic markers, genealogies and biogeographic patterns in the cladocera, Aquat. Ecol. 32 (1998) 37–51. [37] J.K. Colbourne, B. Robison, K. Bogart, M. Lynch, Five hundred and twenty-eight microsatellite markers for ecological genomic investigations using Daphnia, Mol. Ecol. Notes 3 (2004) 485–490. [38] S. Rozen, H. Skaletsky, Primer3 on the WWW for general users and for biologist programmers, in: S. Krawetz, S. Misener (Eds.), Bioinformatics Methods and Protocols, Methods in Molecular Biology, Humana Press, Totowa, NJ, 2000, pp. 365–386, Code available at http://fokker.wi.mit. edu/primer3/. [39] V. Singan, J.K. Colbourne, MicrosatDesign is a pipeline for transforming sequencer trace files into DNA markers, (2004). Available at http://cgb. indiana.edu./publications/49/. [40] M. Schuelke, An economic method for the fluorescent labeling of PCR fragments: a poor man's approach to genotyping for research and highthroughput diagnostics, Nat. Biotechnol. 18 (2000) 233–234. [41] E.S. Lander, P. Green, J. Abrahamson, A. Barlow, M.J. Daly, MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations, Genomics 1 (1987) 174–181. [42] D.D. Kosambi, The estimation of map distance from recombination values, Ann. Eugen. 12 (1944) 172–175. [43] R.E. Voorrips, MapChart: software for the presentation of linkage maps and QTLs, J. Hered. 93 (2002) 77–78. [44] S.E. Lincoln, E.S. Lander, Systematic detection of errors in genetic linkage data, Genomics 14 (1992) 604–610. [45] G.B. Martin, J.G.K. Williams, S.D. Tanksley, Rapid identification of markers linked to a Pseudomonas resistance gene in tomato by using random primers and near-isogenic lines, Proc. Natl. Acad. Sci. USA 88 (1991) 2336–2340. [46] M. Lynch, B. Walsh, Genetics and Analysis of Quantitative Traits, Sinauer, Sunderland, MA, 1998. [47] S.F. Altschul, T.L. Madden, A.A. Schaffer, J. Zhang, Z. Zhang, W. Miller, D.J. Lipaman, Gapped BLAST and PSI-BLAST: a new generation of protein database search programs, Nucleic Acids Res. 25 (1997) 3389–3402. [48] J.K. Colbourne, V.R. Singan, D. Gilbert, Wfleabase: the Daphnia genome database, BMC Bioinform. 6 (2005) 45. [49] SAS, 2003 JMP IN 5.1, SAS Inst. Inc., Cary, NC. [50] M. Lynch, M. Pfrender, K. Spitze, N. Lehman, J. Hicks, et al., The quantitative and molecular genetic architecture of a subdivided species, Evolution 53 (1999) 100–110.
© Copyright 2026 Paperzz