4.4 Factoring Quadratic Expressions Name: __________________ Objectives: Students will be able to find common binomial factors of quadratic expressions and factor special quadratic expressions. -Greatest Common Factor (GCF): The largest number and/ or variable that is a factor of all terms. GOLDEN RULE OF FACTORING! Always look for a greatest common factor (GCF) before doing any other type of factoring. Examples: Factor out the GCF. 1.) 4x2 - 2x Oct 28:54 AM 2.) 5y3 + 10y - 15y6 4.) 7(x + 2) -2x(x + 2) 3.) 40xy2 + 10x2y + 50x4y3 5.) x(x - 4) + 2(x - 4) Oct 28:56 AM 1 Do you remember how to multiply out (x + 2)(x + 4)? Now, we'll reverse this process. To factor x2 + bx + c, find factors of c that add up to b. Examples: Factor. If the expression cannot be factored, say "does not factor." 1.) x2 + 4x + 3 2.) x2 - 9x + 20 3.) x2 + 3x - 12 4.) x2 - 7x + 10 Oct 2412:21 PM 5.) x2 - 4x - 12 6.) m2 + 8m - 65 7.) p2 + 8p + 16 Difference of Two Squares a2 - b2 = (a + b)(a - b) Examples: Factor. 1.) x2 - 4 4.) x4 - 16 2.) a2 - 81 3.) 100 - x2 5.) 16x2 - 1 Oct 2412:28 PM 2 Factor by Grouping 2.) 2x3 - 4x2 - 5x + 10 1.) 3x3 + 12x2 + x + 4 Steps to factoring ax2 + bx + c: (Rewrite Method) 1.) 2.) 3.) 4.) Multiply a and c. Find factors of ac that add up to b. Rewrite bx using those factors. Factor by grouping. Oct 28:55 AM Examples: Factor. 1.) 16x2 + 8x + 1 2.) 3x2 - 7x + 4 3.) 4y2 - 5y - 4 4.) 4x3 - 2x2 - 6x Oct 210:10 AM 3
© Copyright 2026 Paperzz