MAC 2312 Spring 13 Ref: 675181 Exam 1 Review Mr. Guillen Exam 1 will be on 02/01/13 and covers the following sections: 6.1, 6.2, 6.3, 6.4, 6.5, 6.6. SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. Find the volume of the solid generated by revolving the region bounded by the given lines and curves about the x-axis. 1) y = x, y = 0, x = 2, x = 4 1) 2) y = x, y = 0, x = 0, x = 6 2) 3) y = 2x + 3, y = 0, x = 0, x = 1 3) 4) y = 5) y = 1 , y = 0, x = 1, x = 2 x sin 4x, y = 0, 0 ≤ x ≤ 4) π 4 5) 6) y = 2x, y = 2, x = 0 6) 7) y = - 3x + 6, y = 3x, x = 0 7) 8) y = x2 , y = 36, x = 0 8) 9) y = x2 + 1, y = 3x + 1 9) Find the volume of the solid generated by revolving the region about the y-axis. y2 10) The region enclosed by x = , x = 0, y = - 5, y = 5 5 11) The region enclosed by x = y1/3, x = 0, y = 27 12) The region enclosed by x = 13) The region enclosed by x = 6 , x = 0, y = 1, y = 4 y sin 4y, 0 ≤ y ≤ π ,x=0 8 14) The region in the first quadrant bounded on the left by y = x3 , on the right by the line x = 2, and below by the x-axis 10) 11) 12) 13) 14) Use the shell method to find the volume of the solid generated by revolving the region bounded by the given curves and lines about the y-axis. x 15) y = 3x, y = - , x = 1 15) 3 16) y = 3x, y = 6x, x = 3 16) 17) y = 2x 2 , y = 2 x 17) 18) y = x2 , y = 4 + 3x, for x ≥ 0 18) 19) y = 50 - x2 , y = x2 , x = 0 19) 20) y = 5 , y = 0, x = 1, x = 25 x 20) 4 , y = 0, x = 2, x = 4 x 21) 22) y = x2 - 5, y = 4x, x = 0, for x ≥ 0 22) 21) y = Use the shell method to find the volume of the solid generated by revolving the region bounded by the given curves and lines about the x-axis. 23) x = 6 y, x = - 6y, y = 1 23) 24) x = 3y2 , x = - 3y, y = 3 24) 25) y = 25) x, y = 0, y = x - 6 26) y = 5x, y = 10x, y = 5 26) 27) y = 8x 3 , y = 8x, for x ≥ 0 27) 28) x = 18 - y2 , x = y2 , y = 0 28) Use the shell method to find the volume of the solid generated by revolving the region bounded by the given curves about the given lines. 29) y = 4x, y = x2 ; revolve about the y-axis 29) 30) y = 2x, y = 0, x = 2; revolve about the x-axis 30) 31) y = 5x, y = 0, x = 2; revolve about the line x = -3 31) Find the length of the curve. 32) y = 3x 3/2 from x = 0 to x = 5 9 33) y = (16 - x2/3) 3/2 from x = 1 to x = 64 32) 33) 34) y = 1 3 1 x + from x = 1 to x = 3 6 2x 34) 35) x = y4 1 from y = 1 to y = 2 + 8 4y2 35) 36) x = 1 3/2 y - y 1/2 from x = 9 to x = 16 3 36) 37) y = 3 4/3 (x - 2x2/3) from x = 1 to x = 27 8 37) 38) x = 2 (y - 1) 3/2 from y = 1 to y = 4 3 38) Find the area of the surface generated by revolving the curve about the indicated axis. 39) y = x3 /14, 0 ≤ x ≤ 4; x-axis 39) 40) x = y3 /14, 0 ≤ y ≤ 4; y-axis 40) 41) y = 41) x, 3/2 ≤ x ≤ 9/2; x-axis 42) x = 3 4 - y, 0 ≤ y ≤ 15/4; y-axis 42) Solve the problem. 43) The spring of a spring balance is 6.0 in. long when there is no weight on the balance, and it is 8.9 in. long with 8.0 lb hung from the balance. How much work is done in stretching it from 6.0 in. to a length of 14.8 in.? 43) 44) It took 1930 J of work to stretch a spring from its natural length of 2 m to a length of 4 m. Find the springʹs force constant. 44) 45) A force of 3 N will stretch a rubber band 4 cm. Assuming Hookeʹs law applies, how much work is done on the rubber band by a 9 N force? 45) 46) A bathroom scale is compressed 1 in. when a 190 lb person stands on it. Assuming that 4 46) the scale behaves like a spring that obeys Hookeʹs law, how much does someone who 1 compresses the scale in. weigh? 8 47) A force of 1300 lb compresses a spring from its natural length of 17 in. to a length of 14 in. How much work is done in compressing it from 14 in. to 7 in.? Find the center of mass of a thin plate of constant density covering the given region. 48) The region bounded by y = x2 and y = 5 47) 48) 49) The region bounded by y = 10 - x and the axes 49) 50) The region bounded by y = x4 , x = 2, and the x-axis 50) 51) The region bounded by the parabola y = 49 - x2 and the x-axis 51) 52) The region enclosed by the parabolas y = - x2 + 18 and y = x2 52) 53) The region bounded by the parabola x = y2 and the line x = 9 53) Find the center of mass of a thin plate covering the given region with the given density function. 54) The region bounded by the parabola y = 16 - x2 and the x-axis, with density δ(x) = 4x2 55) The region bounded below by the parabola y = x2 and above by the line y = x + 2, with density δ(x) = 9x 2 56) The region between the x-axis and the curve y = 5 x2 , 1 ≤ x ≤ 2, with density δ(x) = 5 x2 54) 55) 56) 57) The region enclosed by the parabolas y = 8 - x2 and y = x2 , with density δ(x) = x2 57) 58) The region bounded by x = y2 and the line x = 4, with density δ(x) = y2 58) 59) The region between the curve y = x 3 and the x-axis from x = 1 to x = 9, with density δ(x) = x 59) Answer Key Testname: MAC_2312_SPRING_13_EXAM_1_REVIEW 1) 56 π 3 2) 18π 3) 4π 1 4) π 2 5) 1 π 2 6) 8 π 3 7) 18π 31104 8) π 5 9) 207 π 5 10) 50π 729 11) π 5 12) 27π π 13) 4 14) 64 π 5 15) 20 π 9 16) 54π 3 17) π 5 18) 64π 19) 625π 2480 20) π 3 21) 16π 875 22) π 6 23) 44 π 5 24) 351 π 2 25) 63 π 2 26) 25 π 3 27) 256 π 21 28) 81π Answer Key Testname: MAC_2312_SPRING_13_EXAM_1_REVIEW 29) 128 π 3 30) 32 π 3 31) 260 π 3 32) 335 243 33) 90 14 34) 3 35) 33 16 36) 40 3 37) 36 14 38) 3 39) 1132 π 49 40) 1132 π 49 41) 19 19 7 7 π 6 6 42) 125 - 5 10 π 2 43) 44) 45) 46) 47) 110 lb·in. 965 N/m 0.54 J 95 lb 20,000 lb·in. 48) x = 0, y = 3 10 10 49) x = ,y= 3 3 50) x = 5 40 ,y= 3 9 51) x = 0, y = 98 5 52) x = 0, y = 9 27 53) x = ,y=0 5 54) x = 0, y = 55) x = 32 7 8 118 ,y= 7 49 Answer Key Testname: MAC_2312_SPRING_13_EXAM_1_REVIEW 56) x = 3 5 ,y= 2 4 57) x = 0, y = 4 20 58) x = ,y=0 7 59) x = 13 1 ,y= 3 2 ��������������������������������������������������������������������������� ��������������������������������������������������������������������������������� �����������������������������������������������������
© Copyright 2026 Paperzz