S4MA Set C Paper 2 Answer www.pmc.sg Sec 4 Maths Exam papers with worked solutions SET C PAPER 2 Answer Compiled by THE MATHS CAFE 1|Page S4MA Set C Paper 2 Answer www.pmc.sg Q Steps / Answers (a) (i) 1 Type of Marks p = 2 p 2 15 12 1 p 3 p 2 5 0 1 (b) (i) (b) (ii) 2 3 2 3x2 x 1 2 (b) (i) (b) (ii) (a) 3 M1 for correct substitution M1 for correct factorisation M1 A1 4 3 x 1 2 43 x 2 (x – 1)lg 3 = (2 – 3x)lg 2 0.782 M1 M1 M1 A1 M1 M1 A1 log 3 y log 3 x 2 y 2 x y = 9x M e 2 tan x + 4 = sec2x 2 tan x + 4 = 1 + tan2x (tan x + 1)(tan x – 3) = 0 71.6, 135, 251.6, 315 C s M1 M1 A1 for identifying common base for using law of indices for using log a x r r log a x 4 3 for correct substitution 3 M1 M1 M1 A1 4 basic shape correct amplitude correct no. of cycles G1 G1 G1 3 x 2 correct table of values 8 solutions M1 2x = 6 – 3y (6 – 3y + 1)2 + 6(y – 2)2 = 49 (5y – 2)(y – 4) = 0 M1 M1 M1 2 2 2 , and 3,4 5 5 M1 h T y=2– e fa 5 h ta p+q=3 3p + q =5 p = 1, q = 2 log 3 (a) Remarks M1 1 lg p lg 5 2 25 3.22 (a) (ii) Total Marks M1 A1 for using log a x log a y log a 1 cos 2 for using sec x = 1 + tan2x for correct factorisation for using sec = for correct line 3 for correct new equation for correct substituition for correct factorisation 2|Page x y S4MA Set C Paper 2 Answer www.pmc.sg 6.49 (b) A1 M1 for correct expansion 14 6 5 14 6 5 1 14 6 5 14 6 5 14 6 5 14 6 5 M1 for rationalization Denominator = 16 1.75 M1 A1 for simplification Ax – 2A + B A=1 B=2 M1 A1 A1 1 96 5 5 1 96 5 5 1 (a) 4 1 2 dx 2 x 2 x 2 ln (x – 2) 2 x 22 1 1 1 (a) 5 (b) M1 A1 r2 = 144 – h2 1 144 h 2 h 3 1 48h - h 3 3 M1 48 - h 2 M1 M1 M1 A1 2x 1 8 e c 2 x 2 6 (a) (ii) (b) (i) 4 for recognizing application of PF in integration M1 M1 M1 [ln 2 – 1] – [ln 1 – 2] 1.69 48 - h 2 = 0 6.93 max value (a) (i) 5 M1 A1 for 1st integral for 2nd integral for using limits 8 for using PT for correct substitution 3 for differentiation for using stationary values = 0 4 M1, M1 for correct integration for constant, c. 2e c A1 1 6 sin 2 x 2 M1 for correct integration 3sin 2 sin 2 3 M1 for using limits e2x (1) + x(2e2x) e2x (1 + 2x) M1 A1 A1 3 3 2 for using product rule allow B2 if e2x (1) + x(2e2x) seen 3|Page S4MA Set C Paper 2 Answer www.pmc.sg (b)(i i) e2x (1 + 2x) = 0 0.5 (b) (iii) e 1 2 x dx xe e dx 2 xe dx 2x 2x 2 xe 4 xe (a) (b) (a) (b) M1 A1 M1 2x 2x M1 M1 1 dx xe 2 x e 2 x c 2 dx 2 xe 2 x e 2 x c A1 2x2 + (4 – k)x + (2 – 3k) = 0 (4 – k)2 – 4(2)(2 – 3k) > 0 k( k + 16) > 0 k < 16 and k > 0 M1 M1 M1 A1 + = 2 and = 0.5 product of roots = 9 sum of roots = 2 x2 – 2x – 9 = 0 M1 M1 M1 A1 2x = 1.1071 M e (c) 20.9 cm (d) sin ( + 1.1071) = = 1.30 (e) (a) 9 (b) 3 2 5 h T ABCD = 4 cos (6 + 2 sin ) XAB = 4 cos sin 4 cos (6 + 2 sin ) = 5(4 cos sin ) + 6 4 cos = sin 2 + 1 3 x 0 4 4y + 16 = 3x 4 y – 6 = x 5 3 4x + 3y = 38 y – ( 4) = solving sim eqns (8,2) x0 y 4 8, 2 2 2 M1 A1 M1 A1 A1 e fa 4 C s h ta AB = cos , AD = 6 + 2 sin P = 4 sin + 8 cos = 12 dy 0. dx for showing integration is reverse of differentiation for splitting up integrals for indication of 2xe2x be subject 2x P = 12 + 4 5 sin ( + 1.1071) 8 2 for using 4 4 2 2 1 M1 A1 2 M1 M1 A1 3 allow B1 for y = 3 x4 4 A1 M1 A1 3 M1 M1 M1 4|Page S4MA Set C Paper 2 Answer www.pmc.sg (c) (a) (b) 10 (16, 8) A1 1 5 0 16 5 2 6 4 8 6 M1 50 A1 2 lg y = 2x lg h + lg k grad = 2 lg h y-intercept = lg k A1 A1 2 new table of values k = 13.2 h = 1.13 appropriate scale straight line that intersects vertical axis (c) (i) x = 24 (c) (ii) lg y = 0.73 y = 5.37 4 for correct substitution of formula M1 M1 M1 M1 M1 5 A1 1 M1 A1 2 5|Page
© Copyright 2025 Paperzz