in dc international nuclear data committee

International Atomic Energy Agency
I N DC
INTERNATIONAL
INDC( C C P
)_x88/L
NUCLEAR DATA COMMITTEE
RADIONUCLIDE YIELDS FOR THICK TARGETS AT 22 MeV
PROTON ENERGY
P.P. Dmitriev and G.A. Molin
Translation from Nuclear Constants 5(44} 43 (1981)
August 1982
IAEA NUCLEAR DATA SECTION, WAG RAMERSTR ASSE 5, A 1400 VIENNA
^v the IAEA in Austria
August 1982
INDC(CCP)-188/L
RADIONUCLIDE YIELDS FOR THICK TARGETS AT 22 MeV
PROTON ENERGY
P.P. Dmitriev and G.A. Molin
Translation from Nuclear Constants 5(44) 43 (1981)
August 1982
L82-2O792
Translated from Russian
UDC 539.172.12
RADIONUCLIDE YIELDS FOR THICK TARGETS AT 22 MeV PROTON ENERGY
P.P. Dmitriev and G.A. Molin
Radionuclide yields during charged-particle bombardment of thick targets
are nuclear constants, which are widely employed in various applied and research
problems - production of radionuclides in accelerators, activation analysis
using charged particles, study of mechanical wear by surface activation, use of
nuclear physical methods in solid state physics, accelerator design, shielding
physics and so on.
The national centres for the recently established inter-
national charged-particle nuclear data compilation network collect data on
radionuclide yields for thick targets in charged-particle reactions.
these data are written on the international exchange format EXFOR.
Many of
The bibli-
ography of integral charged particle nuclear data published recently by the
Brookhaven National Laboratory (USA) [l] contains many references to studies
which give radionuclide yields for thick targets.
The physical yield of a radionuclide in a given reaction is determined by
the excitation function of the reaction, i.e. by the dependence of the effective
reaction cross-section on the bombarding particle energy, by the particle path
and by the content of the initial stable isotope in the target material.
The
relationship between the average effective reaction cross-section over the path
length a, mb, and the radionuclide yield for a thick target B, MBq/pA«h, can be
written in the form
where T, is the half-life of the radionuclide in days, Z the relative charge of
%
a
2
the bombarding particle, R the path of the bombarding particle in mg/cm , A the
atomic weight of the element and P the content of the target isotope in %.
For a low target thickness (small particle path), when the change in the
reaction cross-section through the target thickness can be neglected, this
- 2 -
formula gives the relationship between the reaction cross-section and the radionuclide yield for a thin target.
A similar method of determination of the
reaction cross-section is widely used in measurements of the excitation functions
of nuclear reactions by the "foil stacking" method.
The present study gives the measurements of radionuclide yields during
22-MeV-proton bombardment of thick targets made of different chemical elements.
The work was carried out on the cyclotron of the Institute of Physics and Power
Engineering (Obninsk).
measured.
Altogether 188 yield values of 140 radionuclides were
The data obtained are shown in Table 1, where the following notations
have been used: n - neutron, p - proton, t - triton, x - helium-3, a - helium-4
(a particle).
Deuteron, as a weakly bound system, has a low emission proba-
bility and is not shown in column 3.
Column 3 gives the reactions which have an energy threshold lower than
22 MeV.
The comma separates the reactions which occur with the stable isotopes
of the element indicated in column 2.
Knowing the emitted particles, one can
of course easily indicate the reactions of formation of the radionuclide.
example, during the production of
reaction (pn) with
Li:
For
Be from Li, emission of particle n means the
Li(pn) Be.
During the production of
emission of particles a and an means the formation of
Be from boron,
Be in reactions (pa)
and (pan) with boron isotopes:
B(pa) Be and
B(pan). Emission of particles
46
2p, j , otn during the production of
Sc from titanium means the reactions:
T
47
a
Ti( P 2p) 4 6 Sc,
48
Ti( P T) 4 6 Sc,
49
Ti(pa) 4 6 Sc, 5 °Ti(pan) 46 Sc.
The sign + in column 3 indicates that in some sums of reactions a shorterlived isobaric nucleus is formed, which decays to the radioisotope obtained.
18
For example, in the production of
F from fluorine, emission of particles
19
18
19
18
18
pn + 2n means the reactions
F(ppn) F and
F(p2n) Ne(T, = 1.67 s) -*• F.
2
57
Similarly, during the production of
Co from Ni, emission of particles 2p + pn +
2n,a,an indicates the following channels of formation of
58
57
Ni(ppn) Ni(T, = 36.16 years) Co,
Ni(pa)
Co,
Ni(pan)
5?
Co.
Co,
58
5?
Co:
Ni(p2p)
Ni(p2n) Cu(T L = 0.18 s) -
5?
Co,
Ni -
The form of writing used in column 3 is
obviously very compact in comparison with writing out the reactions in full.
It should be borne in mind that in a number of cases, for example
in the
region of heavier nuclei, the thresholds of reactions with emissions of
particles p2n and 2pn can be noticeably lower than 22 MeV, and these reactions,
- 3 -
together with reactions (pt) and (px), will make a contribution to the radionuclide yield which may exceed that due to reactions; with emission of t and T.
Column 3 contains no reaction of radiative proton capture (pY) (emission of
Y-rays only) because of the relatively low cross-section of these reactions.
Column 4 gives the yield and, in brackets, the error of this value.
The
third figure with a + or - sign means the power of 10: the yield value and the
error have to be multiplied by 10 raised to this power.
For example, 28(3) +3
means 28 000 +_ 3000; 16.5(2.2)-4 corresponds to 0.00165 +_ O.OOO22 and so on.
In all cases, the yields were measured for elements of natural isotopic
composition.
During irradiation of a chemical compound the yield is converted
in terms of the pure element.
Most of the yield values given in Table 1 are
being published for the first time, while some are taken from studies published
earlier, where the radionuclide yields were measured as a function of the
bombarding particle energy (the latest of these are Refs [2, 3]). The method
of yield measurement is described in Ref. [3]; the error in the yield value in
most cases is 11-15% and results mainly from the systematic errors during
the measurement of the isotope activity and the integral sample-irradiation
current.
In some cases (radiochemical extraction, unfavourable conditions
of activity measurement), the error in the yield value exceeds 15%.
Table 2 gives the half-lives and the energy and quantum yield of gamma rays
used in the nuclide activity measurement.
The data in Table 2 are taken from
Refs [4, 5] and partly from the latest issues of the Nuclear Data Sheets.
The data presented on radionuclide yields during proton bombardment of
thick targets are most complete.
The yield values published by other authors [6]
refer to a small number of nuclides and, in most cases, are "technological"
yields.
These values are usually lower than the physical yields, and this
may be due to the following reasons: (a) loss of the radionuclide during bombardment (evaporation of the nuclide and the target material); (b) part of the
recorded beam irradiates the structural parts of the target; (c) losses during
radiochemical extraction of isotopes.
Publication of data on radionuclide yields for thick targets will continue.
It is intended to publish the radionuclide yields for 22 MeV deuterons and
44 MeV
ct-particles.
- 4-
REFERENCES
[1]
Burrows X., Deapaay P. The bibliography of integral charged particle nuclear data. Archival
Idition. BIL-I08-5064O. *th Id. Pt 1, pt 2, 1960.
[2]
DMITRIEV, P . P . , e t a l . , At. Ehnerg. 50 (1981) 418; 49 (1980) 329; 46 (1979)
53; 42 (1977) 148; 41 (1976) 4 3 1 ; 41 (1976) 48; 40 (1976) 6 6 .
[3]
DMITRIEV, P . P . , e t a l . , i b i d . 48 (1980) 402; 48 (1980) 122; 46 (1979) 185.
[4]
GUSEV, N.G., DMITRIEV, P . P . , The Quantum R a d i a t i o n of Radioactive N u c l i d e s ,
Atomizdat, Moscow (1977) ( i n R u s s i a n ) .
[6]
toderer 0 . , Shirley V. Sables at Isotopes, fth I d . J.Wiley and Sons. 1978*
Martin J. e . a . Vueleonics, 1955t • • U i > 3t P. 28| drorvenun J . , Xruger P. Inter. J. Appl.
Bad. Isotopes, 1959, T. 5, p . 21» Oleson Q. e . a . Ibid., 1962, T . 13, p . 223» Qala S. e . a .
Ibid., 1979, • • 30, p. 85.
Paper received on 29 October 1981
Table 1.
Radionuclide Target
1
"Be
11
c
18,.
22
Ha
24
He
26
A1
Yield,
MBq^jA-h
3
Li
Be
oC, ain
B
n
PB| t
oC, oin
C
H
0
n
pat t
of, ota
10,7(1,4)
46(6)-2
19(2,5)-I
28(3)+3
20(2)+2
48(5)+I
I7(2)+3 96(I0)+2
BC
Ti
2p, % oi,cCn
47
SC
Ca
m±
2n
36(6 )-3*
45(7)-2
I6(2)-I
I5(2)-4
V
44Ti
So
2n
48y
Ti
n , 2n
49y
Ti
n, 2n
pn 4 2n, t
I2(2)-2
S?(6)-4
n
pn + 2n, t
20,5(2,2)
59(7)-I
59(7)-2
21(2,4)
V
Cr
n, 2n
54
Mn
Cr
Mn
pn
Mn
n
Ha
Me
pn + 2n
XfiC, Un
Mg
2p,t
38(5,5)-I
Me
n
48(7)-9
2p, T, oCn
78(I2)-4
K
47
4f
Ca
Ca
2V.et
I8(2,6)-3
Ca
2p + pn
"sc"
Ca
Sc
n
pn
Ca
n
So
4
Ma
n
pn + 2n
Ca
4
B
32(5)
Cr
55,e
V
Cr
Hn
¥•
55
28(4)-3
65(I0)-2
36(6)
Yield
MBqAiA.h
46
52
0
F
36(5,5)-8
43
Emitted
particles
51
pn
K
Target
15,5(1,6)
33(3,5)+2
23(3)-2
I6,5(2,2)-3
Al
42
Radionuclide
i
n
t
B
C
M
13 H
Emitted
particles
Radionuclide y i e l d s for a t h i c k t a r g e t
a t 22 MeV proton energy
Co
•1
5 6 co
57
Co
„
re
Co
oCn
n
pn + 2n, X
2n
oC
n , 2n
T + t , afn
n , 2n
t
19(2)
I7(2)-3 "
80(I0)-2
84(6)-2
33(6)-2
24(3)-I
16,6(2.1)
28(4)-I
I7,4(2,3)-3
2I(3)-3
92(I6)-4
- 5 -
Radio- 'arnuclide get
1
£
•1
58
Co
57
pn
V, oC, oin
c«
•1
2p, T, oin
Mi
li
M1
"cu
67
Co
CU
62
Za
65
Za
li
X
pn + 2n
pn
Cn
Zn
2n
Cn
Cn
Zn
Yield
MBq/iiA-h
I
4I(5)-I
37(5)-3
32(4)
93 in
I0,4(I,4) + I
93
a, 2a
26(3)+I
67
te
Za
Ge
a, 2a
oi, a£2a
32(3,8)
23(3,2)-I
68
te
te
72
'km
13
km
74
A«
l6
km
75
Se
67(9)-2
a, 3a
pn + 2n
n, 3n
93(11)
61(8)
32(5) v
Ge
a,
2B
I3,5(2)+I
Ge
a,
2B
I9(2,5)~I
Ge
B, 3B
km
Se
T, oi, oCn
70(9)-I
35 (^«5 )~I
56(8)-3
te
km
Se
jm
a
96(I4)-I
B
20(3)-I
23(3,5)-2
pn + 2n, t
3*
«,
Se
Br
a, 2a
t
^BT
Se
n
79
Kr
Br
^Eb
Rb
Sr
52(8)-2
T, oi, cLv. 52(8)-2
Rb
Sr
a, 3a
pn + 2n, t
a, 2 B
77
T7
Br
85
^Y
Sr
Sr
•s
Sr
T
Bb
a,
2B
93(12)
34(4,5)
4I(6)-2
67(10)
pn
B,
2a
a
pn
26(3,I)-I
21(2,5)-2
61(9)
85(11)
83(4,3)-I
42(5,5)-2
Y
2n „
n
oin
Sip + pn
Zr
Vb
n, 3n
Zr
2n
pn_
Ib
n
lb
n
Tc
Mo
Mo
n, 2n, 3n
n, 2n, 3n
Tc»
101 m
Mo
n, 2n
Ru
Rb
n, 2n
t + 3B
. 102 Rh B
Rh
pn
97
102
Eh
Rh
pn
103
Pd
Rh
n '
Cd
2]>, oC, oCn
A«
pn
k^
pn
110^
Cd
2j>, T, oC,oCn
A<
n, 3n
n
pn-f2n, t+3n
109
Cd
Ag
Cd
115
Cd
Cd
pn
In
Cd
n, 2n, 3a
n, 3n
"•in"
Cd
In
pn
113
8a
In
Sn
n, 3n
pn+2n,t+3n
120
Sb-
Sn
n, 3n
122
Sb
SB
n, 3n
Sb
121^-
Sn
n
Sb
n, 3n
121
Sb
n, 3n"
i24
te
123,.-
.
Sb
Yield
MBq^iA-h
n
M!
10,7(1,4)
2B
3
t, oi, oin
Zr
B
44(8)-3
Za
Ge
Zr
92
Emitted
particles
Zr
Y
ffb
13(1,8)+I
"te
te
te
d
Zr
I3(2)-5
35(5)-3
te
te
89
a
2B
Tar e t
II(I,4)-I
59(7)-2
pn + 2n, t 39(5)-2
oin
89(II)-3
6S
Padionuclide
a
2y+Bn+2B,*,rfB
•i
6o
56
Emitted
particles
a
96(I4)-4
I9(2,7)-I
89(5,5)
20,4(3)-I
44(6,5)-8
89(I2)-2
22(3)-I
25(3,5)-2
30(4,5)
I4,4(2,2)-5
54(6,5)-2
19,4(2,8)
39(5)-2
31(4,6)
70(II)-2
24(3,6)-3
27(4)-2
94(I3)-I
74(II)-8
I0,4(I,5)-I
I3,7(2)-6
52(8)-5
35(5)+I
I9(2,5)-2
27(4)-8
74(II)-2
54(6,5)
4I(5)-2
42(5,5)-2
10,8(1,3)-2
II(I,5)-3
78(II)-2
83(5)-I
92(I4)-8
21,4(3)-2
30(4)-I
I5,5(2)-2
123
I
Te
xi, 2a, 3a 41(5)
124
I
Te
ii, 2 a , 3a >6(I2)-I
- 6 -
Radio- Target Emitted
nuclide
particles
l
125!
d
126j
130
J
I
127
1<:
'le
11O
132
CB
4 'SO
133
133
Te
11,4(1,9 )-I
Te
I
a, 3n
36(4,5)-!
18{2,2)-I
39(5)
n
I
n
m
CB
Ba
CB
Ba
135^
Ba
La
Ba
La
Ce
139
140
143
Pr
Sd
*m
144
P-
148
Ce
Pr
Bd
ffd
147
iu
l»d
Sm
148
*u
Sm
P-
15
V
Sm
Eu
Sm
Eu
15
Su
l51
153
0d
Od
155
Tb
156 tb
158
l65
3m
Eu
Eu
Gd
Gd
Tb
Gd
Tu
Er
166
Tu
l67
Tu
pn
Te
Ca
B
3
a, 2a
Ba B
135
Yield
MBq/PA-h
Er
Er
19(3)-I
pn
!7,4(2,4)-I
n
18,5(2,8)
a
2I(3)-3
pa, t
85(I0)-2
oCv.
85(10)-!
a, 2a, 3a 2!.5(3)
44(5,3)-2
a
pn + 2a
I3(I,8)-I
2a' '-
2a
92(I3)+I
92(13)
a, 2a, 3a 59(8)-2
Radionuclide Target
1
168
Tu
170
Tu
d
a
a, 3a
Lu
Er
Er
Yb
"*Lu
Yb
a, 3a
175
Kf
pn+2n, t+3n
173
I5(2,I)-I
n, 2a, 3a .24(3,5)-I
a, 2a, 3a 56(8)-2
I0,7(I,6)-4
"a, 3a
I0,4(I,5)-4
pa
37(5,5)-4
a, 3a
44(6,5)-4
pa
I7(2,6)-4 .
63(I0)-3
a, 3a
a
4I(6)-3
a, 2a, 3a 55(8)
a, 2a, 3n 14,3(2)
59(9 )-5
a, 3a
2a, 3a
73(8,5)
a
29(3,3)+I
93(II)-I
n
a, 2n
Yield
MBqAiA-h
24(2,8)-2
I6,6(3,I)-3
30(4,4 )-2
28(4 ;-S
40(6)-2
12,8(2)+!
38(5,5)
I2(I,8)-2
I0,4(I,4)+I
Ta
177 T B
18l
ftf
Hf
w
Ta
a
i8i
Re
W
2a, 3a
V
a, 2a, 3a
87(II)-I
'w
a, 2a, 3a
68(9)
IO£
Re
183
Re
184
Re»
a, 2a, 3a
a, 2a, 3a
w
a, 2a
12,2(I,6>I
V
a, 3a
a, 3a
30(4)-8
I2,6(I,6M
a, 3a
I2,2(I,7M
184
4 Qi
Re
w
18
5M
a, 2n, 3n
194
Au
Re
Pt
195
Au
Pt
a, 2n
Pt
a, 3a
Au
pa
1 6
? Au
197
203
Hg
Au
a
Hg
H«
2p+pn
Tl
201 Tl
Hg
Hg
a, 2a, 3a
2O2
T1
Be
pb
Tl
Tl
a, 3a
pa .
200
201
202^*
O/\1
203
pb
Tl
a, 2n
3a
2n
78(11)
I5(2,2)-2
26(3,7J-I
I8(2,7)-I
92(14)-!
I6,6(2,5)-3
43(6,4)
31(4,6)
80(I2)-2
96(I4)-3
28(4,2)
63(9,5)
Tl
a, 3a
32(3,9)
Pb
2a, 3n
72(II)-I
Pb
a, 2n, 3a
11,3(1,7)
one
205
Bi
one
206
Bi
O/V7 >
207
a, 2a, 3a
a, 2a
Hf
176
n, 2n, 3a 2I(3)-2
a, 3a
Emitted
particles
Bi
Pb
Bi
a, 2a
t + 3a
I5(2,2)-3
13(1,9)-4
-
Table 2:
Nuclide
Be
c
18,
2S
Half-life
W
53,B
AI
42
I
« !
4 7
C
"se"
d
Quantua
yield per Nuclide
decay, %
a
k
477,6
10,3
Half-life
d
.1
7
Gamma ray
energy,
keV
Quantum
yield per
decay, %
1
a
83,9
d
1120
H[00
min
5ni
200
* Sc
3,4
d
159,4
70
9»9? min
109,7 min
5IIi
200
47,3
a
1157
103
511+
193
«*Ti
4%
16
d
I3II
98
100
49V
330
d
KX4.55
19,3
100
51
Cr
27,7
d
320,0
9.8
1809
99,7
52
«n
5,67
d
744,0
85
20,5
2,6C d
15,0
26
Gana ray
energy,
keV
d
11
-
C h a r a c t e r i s t i c s of the r a d i o n u c l i d e s used in a c t i v i t y measurement
l
7
7
127*
h
7,38-IC
5
1366
a
12,4
h
15,25
18
5 ^
312
d
835,0
100
22,6
h
593,0
8,9
55P,
2,6
a
KX5.93
25,7
4,55
d
1297
75
55Co
17,5
h
932,0
75
2,44
d
270,9
87
56 C O
78,5
d
1238
67,6
3,92
h
1157
103
57 C o
271
d
122,1
- 85,2
-
Nuclide
5flco
60
Co
5
Hi
Hi
57
64
CU
67
Cu
62
66
71
73
74
76
7
82
17,0 d
357,6
0,029
47
Ag
4I,3d
644,6
11,8
106
8,4ld.
1045
25,7
127 a
614,4
92,5
d
937,5
32,4
m
1039
35,5
22,7
107
1106
31
115
87,5
111
114
AB
AS
s,
Br
Br
Sr
118 d
16,2 h
57
h
35,3 h
35
h
95To"
238,9
698,3
398,0
73,4
26,1
28,6
9,5
99,3
14,7 h
627,7
33,3
d
1836
394,0
909,1
724,2
92,1
99,6
97
99,9
43,7
101,1 d
934,0
99,1
35
765,8
998
d
6,b5h
684,6
30C0 a
61 d
KXI6,86
204,1
4,28 d
1127
Cd
453 d
88,0
53,5 h-
527,9
26,4
In
2,8 d
245,4
9*
In
49,5 d
191,6
17
Sn
cd
92
48
66,2
15,2
*,?
3,79
115 d
391,7
64,2
Sb»
5,76d
197,3
38
122
sb
2,7Id
564,0
71
Sb
60,2d
1691
49
154.d
2i2,2
81
59,5
514,0
484,8
93,1
43
64,7 d
54
Mo
559,2
5,49 h
12O
124
264,6
250
:
cd
113
60
75,3
78,4 h
m
559,5
"
10,6
d8I,5
83,4 d
Hb
595,7
V
77,4
32,8 d
107 d
Zr
To
23,6 h
80,3 h
Zr
lto
I7,d d
46
P4
11
53,3
697,1
105
50,6
80,3 d
84,3
0,55
III5
834,0
306,8
28
244
26,0 h
d
511+
39,0 h
A.
4,34
207 d
Ag
108 m
A«
174,9
49
Rh
22,7
64,8 b
KXI8,66
103
596,6
h
d
82,3
9,26 h
d
87
2,89 a
G«
^ub*"
96
184,6
Quantun
yield per
decay, %
102
3,2
8Bzr
93
1347
energy,
keV
Rh
1078
88Y
93
1378
m
102 a
288 d
87r
95
61,9 h
750,6
48
Hh
Ge
86 T
95
12,7 h
100
l01
109
^ b
89
36,2 h
13,32
97 T c -
184,6
T9KT
85
d
99,4
Half-life
decay, %
78,3 h
Sr
77
6,1
810,8
Gaaia ray
Nuclide
3a
As
75
5,27 a
Quantum
yield per
9,4
Afl
72
70,8 d
Ganna ray
energy,
keV
-
Ga
67
69
zn
Half-life
8
121
m
Te
121
Te
17 d
507,5
19,3
ia3
Te"
120 d
159,0
84
123
I
13,3 h
159,0
82,9
124
I
4,18 d
602,7
62,8
125X
59,9 d
KX28,03
139
126,
12,9 d
666,4
33
13O
I
iz,* k
1157
il,4
127
le
36,4 d
375 ,U
20
132
C.
6,48 d
667,5
98
133
Ba»
38,9 h
275,6
17,5
133
Ba
10,5 «
356,0
61,6
28,7 h
268,2
14,9
La
Ce
19.5 b
138 d
480,5
1,37
165,3
30,1
I
135
i
!
1 1R
1JJ
139
139
Ba
ffl
Pr
4,^2 h
511+
15,8
140
Ud
3,37 d
KX36.75
67
143
P»
265 d
741,9
47
-
Nuclide
Half-life
c
i
363
148
147
148
Gamma ray
energy,
keV
Quantum
yield per
decay, %
d
1465
Eu
24,S d
197,5
Bu
54
d
KX5B.8
64,6
24
2C
h
365,5
56,4
c'c
1B2
6%
h
1121
24,5
182
Re
163 R e
12,7 h
70
d
1121
291,7
31,5
3,3
164 Re Bi
165
3c
d
d
920,9
792,1
8,3
34
08
94
d
646,1
SI
Au
35,5 h
328,5
61
Au
192
d
96,66
12
6,16 d
64,1 h
355,7
90
0,96
E u " 35,5 a
439,0
66
152
13,2 a
964,C
]4,2
165
6,5. a .
123,1
40,5
I2C
d
24E.6
7,1
M
2*2
d
97,43
22,6
Tb
5,32 d
105, E
19,2
Tb
5,34 d
Tb
I5C
a
TU
^ 8 ^Ee
* Au
H£
197
962,2
2C.I
203
29,6 h
242,9
36
2
7,7
1275
14,6
H«
46,6 d
191,5
279,2
°°T1
26,1 h
36c, C-
89,3
201n
202 T1
73,5 h
12,2 d
167,4
439,4
6,6
92
9,4
h
331,2
•81
3,62 h
787,0
50
ro
52,i h
279,2
81
Bi
15,3 d
1764
21
Bi
Bi
6,24 d
36
a
1719
1064
32
74
167
TU
a,24 d
207,6
41
i6B
Tu
93,1 d
129 d
196,2
84,26
52
3,1
201
1,37 a
27i;,C
17,6
2O3
3,51 a
1241
6
2O5
70
343,4
8£
206
207
i73
Lw
174
Lu
d
202
176
Ta
5,06 h
1159
24,1
177
Te
56,6 h
1130
6
Remarks:
B
Re
6£
h
t
121
5,7
15B
c
181OBe
415,9
156
Gamma ray | Quantum
energy, yield per
keV
decay, %
IOC
d
_c
Half-life
181,
150
BU
Nuclide
1
696,5
5,3? d
151
-
c
B»
Eu
154
9
Pb
Pb
1E
1. KX-rays were used to measure the activities of
93
w
97
<r
m
125
T
14
°MJ
J
181
,,
'..rv
49
V,
• • •
81,4
55
Fe,
c
Mo,
Tc ,
I,
Nd and
W. I. The activities of
44
68
113
some nuclides, for example
Ti,
Ge,
Sn were measured
from the gamma-rays of the daughter.
means annihilation radiation.
3. In column 3:
511i