NEUTRON SPECTRA OF PLUTONIUM COMPOUNDS' Spectrometer Measurements L. W. Brackenbush L. G. Faust February 1970 : AEC RESEARCH & DEVELOPMENT REPORT PACIFIC NORTHWEST LABORATORIES BATTELLE MEMORIAL ~NSTIT UTE BATTELLE BOULEVARD,.P 0 . ?OX 999, ,RICHLAND. WASHINGTON W 3 6 1 . . I -. . i. ~ I . r d 5 > . , , LEGAL N O T I C E '- , I This report w u s prepared as an account of Gavmrnment sponsored work., I%itli+r ~h&,tln~& &@b41 + . , ( ;..,-nor the omm mid on, srar any perjon qetlng on behalf of the Commission: . t 3 A. . Mako m y warranty or represent~tian,expre.sed or lmplied, with rmpecttQ ~)sb.a c a m a q , ~ ' C 2, plmtenesr, as usefutness of the tnfarmtkn contained in this report, or that ;lh@wa aif any ira'~drma6, 1. apparatus, method, w process disclooed in this report may not infringe primtab owned righ~ qr I' %<a 3.- I . -& :; f . 6 , Armnm any ibbilitie~with r n p c t to the ,use dl or for damages mwithg f m only hhformation, apparatus, pethad, or process disclosed in this report. I=icrrc;at - ,- . his used iir the above, *pe~sonacting on behalf ~f the Commisiion' i n c l u b atiy q n + p '+i~ ; centrodor ed the Cornmitdoir, or empJoyee oe such contrcktor, to the extwit t k t sv;h ~m$$yge tmr cqn-. tractor of the Cornkiden, or rmplape of wrh cantractor prtfpores, diisetn'innbs, c$ p~&d& cr~qes~ tb, ' L ,!, any infgtm#Jtton prpnwanr te hfr employment or contract with the Comrnisi~n,sr his: empli~pte~?' 441 $:.'such contractor. ' : '.+ " I , BNWL-1262 UC-34, P h y s i c s NEUTRON SPECTRA OF PLUTONIUM COMPOUNDS P a r t 1: L. 3 ~ ae n d W. 6L i S p e c t r o m e t e r Measurements Brackenbush and b. G. Faust R a d i o l o g i c a l Sciences Department Environmental and ~ i f S e ciences Division February 1970 BATTELLE MEMORIAL INSTITUTE PACIFIC NORTHWEST LABORATORIES R I C H L A N D , WASHINGTON 99352 P r i n t e d i n t h e U n i t e d S t a t e s o f America A v a i l a b l e from C l e a r i n g h o u s e f o r F e d e r a l S c i e n t i f i c and T e c h n i c a l I n f o r m a t i o n N a t i o n a l Bureau o f S t a n d a r d s , U.S. Department o f Commerce S p r i n g f i e l d , V i r g i n i a 22151 P r i c e : P r i n t e d Copy $ 3 . 0 0 ; M i c r o f i c h e $ 0 . 6 5 The neutron energy s p e c t r a of compounds of high-exposure plutonium ( 2 3 p e r c e n t 2 4 0 ~ u a) r e p r e s e n t e d . The n e u t r o n spectrum of plutonium t e t r a f l u o r i d e shows a peak a t 1 . 3 MeV, which a g r e e s with p r e v i o u s l y p u b l i s h e d measurements; t h e n e u t r o n spectrum of plutonium d i o x i d e i s shown t o have a very broad peak a t about 2 MeV. A p r e v i o u s l y u n r e p o r t e d spectrum of a plutonium-aluminum a l l o y ( 2 1 p e r c e n t Pu MeV. - 79 p e r c e n t ~ li s)p r e s e n t e d w i t h a peak a t about 1 . 6 The average f l u e n c e t o dose conversion f a c t o r s c a l c u l a t e d from t h e measured s p e c t r a a r e : Plutonium d i o x i d e rad/n/cm2, plutonium t e t r a f l u o r i d e aluminum a l l o y - f i s s i o n spectrum) 2.6 x - 2.6 x - 2 . 5 x 10" - 2.7 x rad/n/cm2, plutonium- rad/n/cm2, and plutonium m e t a l (spontaneous rad/n/cm2. CONTENTS Page Introduction 1 2 Theory and @ e r a t i o n of t h e Spectrometers ~ e Theory of Operation of 3 ~ Ueutron Energy Spectrometers C a l i b r a t i o n of t h e 311e Spectrometer Experimental Procedures f o r Operation and Data A n a l y s i s f o r t h e 3 ~ Spectrometer e Theory and Operation o f 6 ~Neutron i Energy Spectrometers Results Conclusions 2 - LIST OF FIGURES Page 1 Block Diagram o f F a s t Coincidence System f o r 3 ~ i e Neutron Spectrometer 2 Energy C a l i b r a t i o n Curve f o r 31~eSpectrometers 3 Neutron Cross S e c t i o n s f o r ' ~ e ( n , ~and ) ' ~ i ( n , a ) Reactions 4 S e m i l o e a t i t h m i c P l o t of " ~ r o s s " and "Background" Data f o r e Exposed To a PuF4 Source t h e 3 ~ Spectrometer 5 Neutron Energy Spectrum from PuF,, 6 Neutron Energy Spectrum form a ' ~ Spectrometer i Exposed t o PuF4 7 Neutron Spectrum from PuF,, 8 Neutron Spectrum from Pu02 9 C a l c u l a t e d Neutron Spectrum from Pu02 10 Neutron Spectrum from Pu-A1 Alloy LIST OF TABUS 1 Neutron Source Data 2 Summary o f Measured Neutron S p e c t r a 3 Summary o f P u b l i s h e d lleutron S p e c t r a 4 Neutron Y i e l d s from Plutonium. I s o t o p e s and Compounds 5 Fluence t o Dose Conversion F a c t o r s NEUTRON SPECTRA OF PLUTONIUM COMPOUNDS P a r t 1: 3 ~ and e 6 ~Spectrometer i Measurements - INTRODUCTION To determine neutron dose r a t e s and s h i e l d i n g requirements from plutonium compounds used i n t h e manufacture and processing of r e a c t o r f u e l elements, it i s d e s i r a b l e t o know t h e neutron energy s p e c t r a . Knowing t h e neutron spectrum and t h e neutron f l u x , it i s p o s s i b l e t o c a l c u l a t e neutron dose r a t e s . Pure plutonium metal has a r e l a t i v e l y low neutron emission r a t e a r i s i n g from spontaneous f i s s i o n . However, when plutonium comes i n t o c o n t a c t w i t h m a t e r i a l of low atomic number, t h e neutron emission may be i n c r e a s e d by o r d e r s of magnitude. The neutron s p e c t r a from t h e s e ( a , n ) r e a c t i o n s w i t h elements of low atomic number i s q u i t e d i f f e r e n t from t h e spontaneous f i s s i o n spectrum. This paper p r e s e n t s t h e neutron energy s p e c t r a from P u - ~ ( a , n ) , P U - O (,~n ) , and P u - ~ l ( a , n ) r e a c t i o n s along with a l i s t of f a c t o r s t o convert from neutron f l u t o neutron dose r a t e . Accurate neutron s p e c t r a from plutonium compounds a r e q u i t e d i f f i c u l t t o o b t a i n because of t h e r e l a t i v e l y low neutron y i e l d s of small amounts of plutonium compounds and because most neutron spect r o m e t e r s a r e very i n s e n s i t i v e . Helium-3 and lithium-6 semiconductor spectrometers were used f o r t h e s e measurements because (1)t h e y have very good r e s o l u t i o n , ( 2 ) t h e y a r e moderately s e n s i t i v e ( t h e y have a s e n s i t i v i t y of to events p e r neutron/cm2), ( 3 ) t h e e l e c - t r o n i c equipment r e q u i r e d i s f a i r l y simple, and ( 4 ) t h e d a t a do not r e q u i r e an e l a b o r a t e unfolding technique a s do proton r e c o i l d a t a . As w i l l be explained, t h e 3 ~ spectrometer e g i v e s questionable r e s u l t s a t l ~ w e rneutron e n e r g i e s (below about 1 M ~ V )when a s t r o n g g m a f i e l d is present, A d e t a i l e d explanation of t h e t h e o r y , operation and a n a l y s i s of t h e d a t a i s given i n t h e following s e c t i o n s . SUMMARY Neutron s p e c t r a and f l u x measurements a r e u s u a l l y r e q u i r e d f o r w c w a t e neutron dose r a t e measurements. This r e p o r t p r e s e n t s t h e r e s u l t s of neutron s p e c t r a measurements f o r cckpounds of highexposure piatonium (about 23 pepcent 240F'u) produced by power reac5ors. A high exposure PuF4 source gave a peak neutron energy of 1 . 3 MeV, which agrees with previous measurements; a Pu02 source gave a very broad peak, which can be resolved i n t o a spontaneous f i s s i o n s ~ e c t r - u nx ~ t ha peak a t about 0.7 MeV and an 180(cr,n) spectrum with a peak a t about 2.4 MeV. A 2 1 percent plutonium - 79 percent alummum a l l o y gave a neutron spectrum with a peak at about 1.6 MeV. The average f l u e n c e t o dose conversion f a c t o r s fcr t h e s e sources a r e a s follows: r a d 'n19-m2, PuF4 - 2.5 x 10'~ rad/n/cm2, Pu-A1 a l l o y Pu02 - r f i s s l o n spectrum) 2.7 x 10". - - 2.6 x 10" rad/n/cm2, and pure plutonium metal 2.6 x 10" rad/n/cm2. THEORY AND OPEBATION OF THE SPECTROMETERS Theary a f Operation of t h e 3 ~ Neutron e Energy Spectrometer e d e t e c t o r c o n s i s t s of two c a r e f u l l y matched The 3 ~ neutron sll:con s u r f a c e b a r r i e r d e t e c t o r s s e p a r a t e d by 1 mm and s e a l e d i n t o a d m b l e walled aluminum can I n t o which 3 ~ gas e can be admitted. Each s u r f a c e b a r r i e r d e t e c t o r h a s a s e n s i t i v e a r e a of about 2 cm2 and a d e p l e t i o n depth of 250 microns a t 50 v o l t s b i a s . volume of t h e d e t e c t o r head i s about 280 mm3, The s e n s i t i v e The 1 mrn s e p a r a t i o n r e s u l t s i n some p a r t i c l e l o s s around t h e edges and some s t r a g g l i n g and l o s s of r e s o l u t i o n f o r high gas p r e s s u r e s ( g r e a t e r t h a n 10 atm) . F a s t neutrons i n t e r a c t w i t h t h e 3 ~ gas e i n t h e d e t e c t o r head by t h e following r e a c t i o n : 2He3 + on' + 1 ~ 3 + 1 ~ +1 0.764 MeV Ignoring s m a l l energy l o s s e s due t o s t r a g g l i n g , t h e energy of t h e i n c i d e n t neutron i s e q u a l t o t h e energy d e p o s i t e d i n t h e s u r f a c e b a r r i e r d e t e c t o r s by t h e t r i t o n and proton minus t h e Q value of t h e reaction. The r e l a t i v e i n t e n s i t y of t h e neutron spectrum i s d e t e r - mined by c o r r e c t i n g f o r t h e change i n neutron c r o s s s e c t i o n w i t h energy. The upper l i m i t of u s e f u l n e s s of t h i s device i s about 5 t o 6 MeV due t o ( 1 ) competition of 3 ~ e ( n , d r) e~a c t i o n s f o r e n e r g i e s above 4.4 MeV, ( 2 ) t h e range of r e a c t i o n products from h f g h e r energy neutrons r e q u i r e s a g r e a t e r d e p l e t i o n depth i n s i l i c o n , and ( 3 ) l a r g e depths of s i l i c o n r e s u l t i n cornpetition from neutron induced reactions i n the silicon. F o r t u n a t e l y , t h e neutron s p e c t r a of plutonium compounds c o n t a i n very few neutrons above 5 MeV. Overall r e s o l u t i o n of t h e spectrometer depends upon energy, and t h e peak width from thermal neutrons i s l e s s t h a n 100 keV (FWHM). The e f f i c i e n c y of t h i s device i s q u i t e low p e r neutron p e r square c e n t i m e t e r . - about to events A f a s t coincidence system i s used i n an attempt t o record only e t o exclude t h e t r l t o n and proton from a neutron r e a c t i o n wlth 3 ~ and gamma and &her- neutron interactions. Unfortunately, t h e s u r f a c e b a r r i e r d e t e c t o r s a r e a l s o q u i t e s e n s i t i v e t o gamma r a y s and t o neutron induced events i n t h e s i l i c o n . To minimize t h e "background" from t h e s e extraneous s o u r c e s , i t i s necessary t o have a very f a s t coincidence system, The fast coincidence system used with t h e 3 ~ dee t e c t o r head i s sham In F l g w e I. Care must b e e x e r c i s e d i n t h e s e l e c t i o n of t h e charge s e n s i t i v e p r e a m p l i f i e r s , f o r t h e l a r g e input capacitance of t h e s u r f a c e b a r r i e r d e t e c t o r s can c r e a t e s e r i o u s e l e c t r o n i c n o i s e problems. The linear a m p l i f i e r s a r e operated with 1.8 microsecond tlme c o n s t a n t s f o r doubly d i f f e r e n t i a t e d p u l s e s t o s a t i s f y t h e multichannel analyzer Input s i g n a l requirements. The s i n g l e channel analyzer d i s c r i m i n a t o r s a r e s e t t o t r i g g e r only on p u l s e s eorrespond;ng t a protons and t r i t o n s from thermal neutron r e a c t i o n s and a r e c p e r a t e d i n t h e crossover pick-off mode t o minimize j i t t e r . The ~ o i n z l d o n c eu n i t has a 100 nanosecond ( 2 t a u ) r e s o l u t i o n time. Smaller r e s a l u t i o n times would be d e s i r a b l e t o reduce t h e random rsolncldence from gamma and ~ i ( n , p )r e a c t i o n s , b u t t h e s l i g h t J i t t e r ~ n t r o d u e e dby e l e c t r o n i c n o i s e makes it necessary t o have r e l a t i v e l y large resolution times, C a l i b r a t i o n of t h e ?He Spectrometer The spectrometer was c a l i b r a t e d by using n e a r l y monoenergetfc n e u t r ~ n sproduced by Tlp,n) and ~ ( d , n )r e a c t i o n s from a 2 MeV Van de Graaff a c x l e r a t o r These r e a c t L o n ; a r e eamparatively f r e e of s t r s n g gamma r s y p r o d u c t l a n whlch might , n t e r f e r e w l t h t h e energy calibraflon. ( about S l n c e t h e s f f l c ~ e n c yof t h e d e t e c t o r i s very iow to e v e n t s per n,'cm2 produce a s many n e u t r a n s a:, p o s s l b l e , thick t3 t h r g e t s were used t o lmprove c o u n t l n g s t a t i s t i c s . The r e s u l T r n g n e u t r o n peaks 3 b s e r - ~ e dwere q u ~ t ebr;ad, sc t h a t the l e a d l n g edge; were used f o r r.alibratl:,n purposes I n come ~ n s t a n c e s . The energy c a l i b r a t l ~ n1 s shown ;n Figure 2 f c r the 3 ~ dee t e c t o r o r i e n t e d w i t h t h e s u r f a c e b a r r l e r d e t e c t ~ r sp a r % l l e l t o t h e n e u t r o n beam. The n s n - l i n e a r r e g l o n bel3w about 0.3 MeV 1s b e l l e v e d t o b e due t o d l f f e r e n c e s i n t h e f;.rward s c a t t e r of t h e t r l t o n and p r o t o n from f a s t n e u t r o r r e a c t r o c s arid due t o d l f f e r e n c e s i n t h e e f f i c i e n c y of t h e s11rfa1:e b a l r l e r d e t t : t L x s surfaces. wlth a t h i n l a y e r ,f g o l d on t h e i r p ~ ! s e g e ~ i e r a t o rwas u3ed t a p r c v l d e a secondary A pre:lsLon c a l l b r a t l o n zf tke s p & : t r ~ m e t e r t o a s c ~ r r a ~whether n electronic gain shifts 3 c c u r r e d . T h e s p e c t r o m e t e r w a s r e z d l ~ b r a t e ds e v e r a l t i m e s , and no s l g c i f ~ c a n tchsnges were n c t c d ;vsr The 3 ~ detep?\r e ;hqee-m,nth perlods. he&d e x h l b l t s same ang,,isr r e s p m s e . For exposures m r d e with !..O MeV n e u t r o n s , th- a e p a r h t l o n between t h e thermal neut,ro= p a i r snd !' MeV next1 2n peak i n r r e s s e a ~s t h e 3 ~ e det,e.-tar he;d UF.; r . - - s t ~ df r j m ;p c l s ~ ' ; x i with t h l s ~ r f a c eb a r r i e r l d e t e c t o r s g x ~ r d ; : I ~: t h e r.el:Lr:n b a r r l e r d e t e r ~ , ~perpendi:ulsr c~ betweer! t h e p ~ a k slr,i:rca-;ed paslt:~nc:d &r '$5'; ana d e + e c t a r was p L L ed ht 1~ 9: bemL t 3 3 p a s l t l - r i w ~ t ht h e s u r f a c e t; t h e n e u t r a i beam. The s e p a r a t i o n about 5 pr r.:er.+, wncr? + h e d e t s c t c r was ic:~eiistd pb-ut 12 perpeqd- ula--4 pt:<E3T ' t ., :n.;' when t h e :leuCrari beam. The n e u t r o n peaks sometimes c o n t a i n e d only &bout 100 counts p e r t e n channels, s o t h a t t h e counting s t a t i s t i c s a r e r e l a t i v e l y poor. The ? ~ sep e c t r o m e t e r a l s o e x h i b l t s p u l s e p l l e - u p problems i n s t r o n g gamma f i e l d s . Exposures made w i t h a 1 2 c ( d , n ) r e a c t i o n pro- ducing l , h 8 MeV n e u t r o n s gave u n u s u a l r e s u l t s -- t h e n e u t r o n peak o c c u r r e d i n a channel corresponding t o 1 . 7 MeV n e u t r o n s . The gamma dose r a t e w a s n o t measured w h i l e t h e a c c e l e r a t o r was o p e r a t i n g , b u t a f t e r t h e a c c e l e r a t o r was s h u t down, t h e r e s i d u a l t a r g e t dose r a t e was about 100 mR/hr. With t h e s e k i n d s of dose r a t e s , it i s q u i t e probable t h a t some summing o c c u r r e d , Experimental Procedures f o r Operation and Data A n a l y s i s o f t h e 3 ~ Sep e c t r ~ m e t e r To a c q u i r e n e u t r o n s p e c t r a l d a t a , t h e 3 ~ dee t e c t o r head i s f i l l e d w i t h 80 t o 100 p s i a of 3 ~ gas e which has been p u r i f i e d t o remove t r i t i u m ( p u r i t y of 1 p a r t 3~ o r "foreground" exposure i s made. per loi1 The 'He p a r t s 3 ~ e and ) "gross" i s t h e n removed and a "background" count i s made t o compensate f o r e v e n t s from gamma, s i ( n Y p ) , and o t h e r ~ n t e r a c t f o n s . A f i t of t h e d a t a i s made and t h e "b&ckgrouncil' s u b t r a c t e d . The r e s u l t a n t d a t a a r e t h e n c o r r e c t e d f o r t h e changes i n 3 ~ cer o s s s e c t i o n w l t h energy t a k e n f r o m F f g w e 3"(1) To o b t a f n a c c u r a t e s p e c t r a , ~t was n e c e s s a r y t o I s o l a t e t h e s p e c t r ~ m e t e rarid ta c o n s t r u c t a jig t o s h l e l d and p o s i t i o n t h e 3 ~ e d e t e c t o r head f cr a c c u r a t e "background" c o u n t s , The j i g c o n s i s t s o f a one-lnch l e a d s h l e l d t o r e d w e %he gamms b a c k g r e m d w l t h a 1/8inch f i n s h l e l d 53 reduce any l e a d X-rays p r e s e n t , The 'He d e t e c t o r -. 0 q;r [I) C -0rl c, [I) [I) head f i t s i n s i d e an aluminum c y l i n d e r t o maintain t h e same geometry f o r t t b a ~ k g r ~ u n rdut nf s . F i g u r e 4 shows a semilogarithmic p l o t of t h e d a t a o b t a i n e d by e head i n t h e l e a d s h i e l d e d j i g and p o s i t i o n i n g t h e 3 ~ spectrometer exposing it f o r a two-week p e r i o d t o a plutonium f l u o r i d e sample t h r e e inches i n diameter by t h r e e inches h i g h c o n t a i n i n g 539 grams of h i g h . ft was exposure plutonium ( 2 2 p e r c e n t 2 4 0 ~ u ) The t ' g r ~ ~ smeasurement nade w i t h 100 p s i a of 3 ~ gas e f i l l i n g ; t h e "background" measurement was made w i t h t h e d e t e c t o r head evacuated. Note t h e g r e a t number of "background" e v e n t s a t lower e n e r g i e s due t o random coincidences of gamma r a y s and ~ i ( n , p )r e a c t i o n s i n t h e semiconductor d e t e c t o r s . S u b t r a c t i n g t h e f i t t e d v a l u e s of t h e "background" exposure from t h e f i t t e d v a l u e s of t h e "gross" exposure r e s u l t s i n very l a r g e s t a t i s tical e r r o r s a t lower neutron e n e r g i e s . Figure 5 shows t h e "back- ground" c o r r e c t e d curve obtained by s u b t r a c t i n g f i t t e d v a l u e s . The p o i n t s w i t h e r r o r b a r s a r e t h e r e s u l t s o b t a i n e d by u s i n g t h e a c t u a l "gross" values r a t h e r t h a n f i t t e d v a l u e s . To o b t a i n t h e neutron energy spectrum, it i s n e c e s s a r y t o c o r r e c t f o r t h e changes i n t h e 3 ~ e ( n , p c) r~o s s s e c t i o n w i t h energy a s shown i n F i g u r e 3, The s o l i d l i n e i n F i g u r e 5 i s obtained by m u l t i p l y i n g t h e "backgroundft c o r r e c t e d curve (shown a s a dashed l i n e ) by t h e i n v e r t e d c r o s s s e c t i o n f c r t h e 3 ~ e ( n , p )r e a c t i o n normalized t o a v a l u e of 1.00 f o r t h e peak o c c u r r i n g a t 1 . 7 MeV i n t h e 3 ~ e ( n , p )c r o s s s e c t i o n . Channel Number FIGURE 4 Semilogarithmic Plot of "roreground" and "Background" Data for the 3 ~ Spectrometer e Exposed to a PuF4 Source 8k t a 5 Z 2C 0 VI w 3u u u H Q) Erc a VI C 0 E k u 3 Q) Z Theory and Operation of t h e 'Li Neutron Energy Spectrometer The 6 ~neutron i d e t e c t o r c o n s i s t s of two s i l i c o n s u r f a c e b a r r i e r diodes placed f a c e t o f a c e w i t h a t h i n f i l m of ' L ~ F evaporated onto t h e f a c e of one of t h e d i o d e s . Neutrons i n t e r a c t w i t h t h e 'Li according t o t h e r e a c t i o n : 3Li6 + on1 + 2~e4 + 1 ~ 3+ 4.78 MeV As i n t h e case of t h e 6 ~ sep e c t r o m e t e r , t h e neutron energy i s d e t e r mined by measuring t h e energy of t h e r e a c t i o n p r o d u c t s . The ' L i ( n , a ) r e a c t i o n has such a h i g h Q value t h a t t h e r e a r e few "background" e v e n t s from gamma and neutron induced events i n t h e s i l i c o n . a relatively slow coincidence system can b e used. The s e n s i t i v i t y of t h e 6 ~d eit e c t o r i s l e s s t h a n t h a t of t h e 3 ~ dee t e c t o r . t h i c k n e s s of t h e 6 Hence, I f the ~l a y ie r i~s i n c r e a s e d t o i n c r e a s e t h e neutron s e n s i t i v i t y , t h e r e s o l u t i o n of t h e d e t e c t o r d e t e r i o r a t e s . For a 150 microgram/square c e n t i m e t e r t h i c k l a y e r of ' L ~ F , t h e width of t h e peak r e s u l t i n g from slow neutrons i s typically 300 keV (FWHM). The 6 ~ spectrometer i has a u s e f u l o p e r a t i n g range from 0 . 5 MeV t o about 10 MeV due t o competing n u c l e a r reactions. competing r e a c t i o n 1s t h e ' L i ( n , a ) energy of 1,72 MeV. The most important dn' r e a c t i o n , whlch has a t h r e s h o l d On t h e average, t h e energy of t h e outgolng neutron i s around 1 t o 2 MeV, s o t h a t t h e energy d l f f e r e n e e between t h e 'Li(n,a)dn' and ' ~ i ( n , a )r e~a ~ c t i o n s i s about 8 MeV. For neutron s p e c t r a w i t h a l a r g e number of neutrons above about 5 MeV, t h e s p e c t r a below 1 o r 2 MeV may be i n e r r o r . ( 2 ) The 6 ~spectrometer i was a l s o c a l i b r a t e d by exposure t o monoenergetic neutrons produced by a Van de Graaff a c c e l e r a t o r . However, t h e r e s u l t s a r e more u n c e r t a i n because of t h e lower s e n s i t i v i t y of t h e 6 ~spectrometer i and because of e l e c t r o n i c g a i n s h i f t problems . The d a t a a n a l y s i s of t h e 6 ~spectrometer i i s s i m i l a r t o t h a t of e t h e 3 ~ spectrometer. The "background" i s much lower because of t h e i high Q value of t h e 3 ~ i ( n , a )r e a c t i o n , s o t h a t t h e 6 ~spectrometer p e s u l t s a r e probably more a c c u r a t e a t lower neutron e n e r g i e s c l o s e t o 1 MeV. The d a t a must be c o r r e c t e d f o r changes i n t h e c r o s s s e c t i o n with energy a s shown i n Figure 3. ( 3 ) Since t h e 6 ~spectrometer i has poorer r e s o l u t i o n , one must b e c a r e f u l t o s u b t r a c t out t h e thermal neutron peak b e f o r e applying c r o s s s e c t i o n c o r r e c t i o n s t o t h e d a t a . This can be done by p l o t t i n g t h e thermal peak on a semilogarithmic graph and l i n e a s l y e x t r a p o l a t i n g t h e edge of t h e peak t o h i g h e r neutron e n e r g i e s . RESULTS The experimentally measured neutron energy s p e c t r a from v a r i o u s plutonium compounds a r e shown i n Figures 6 through 1 0 . The r e l a t i v e neutron intensity ( w i t h dimensions of neutrons ) i s p l o t t e d a g a i n s t . t h e neutron energy (wit3hdimensions of M ~ V ) The a r e a under t h e curves i n each of t h e s e f i g u r e s i s normalized t o a value of 100 neutron-MeV ( i . e . , t h e curves a r e d i s t r i b u t i o n f u n c t i o n s whlch have s r d i n a t e values i n p e r c e n t ) . The plutonium compounds used f o r t h e s e measurements were i n t h e form of l o o s e powders, which were s e a l e d i n s i d e of two t h i n walled s t e e l cans. A summary of t h e plutonium sources used i s shown i n Table 1. The r e s u l t s of t h e s e measurements a r e summarized i n Table 2 , and a summary of published s p e c t r a l d a t a i s included i n Table 3 f o r comparTson. F i g u r e 6 shows t h e neutron s p e c t r a o b t a l n e d from a 6 ~neutron i spectrometer exposed t o a l a r g e , low e x p o s w e ( 6 p e r c e n t 2 4 0 ~ u ) plutonium t e t r a f l u o r i d e source ( s o u r c e A i n Table 1 ) . The a r e a under each curve i s t h e same, s o t h a t t h e e f f e c t s of t h e one-inch L u c i t e moderator a r e apparent. The moderator i n c r e a s e s t h e peak width, removes a few higher energy n e u t r o n s , and c r e a t e s a few lower energy neutrons. The peak occurs a t 1.1 MeV, which i s somewhat lower t h a n o t h e r measurements i n d i c a t e ( s e e Table 3 ) . The energy c a l i b r a t i o n f o r t h e s e measurements i s somewhat u n c e r t a i n . Flgure 7 shows t h e neutron spectrum o b t a i n e d from a 3 ~ neutron e spectrometer n t h a high exposure (22 p e r c e n t 2 ' 0 ~ u ) plutonium t e t r a f l u o r i d e s o u r c e , d e s i g n a t e d a s source B i n Table 1. Note t h a t t h e energy peak a t 1 , 3 MeV i s i n e x c e l l e n t agreement w i t h p r e v i o u s i y published d a t a o b t a l n e d from n u c l e a r emulsions and s t i l b e n e c r y s t a l s ( p r o t o n r e c o i l ) shown i n Table 3. The spectrum from a high expzsure (22.7 p e r c e n t 2 ' 0 ~ u ) plutonium d i o x i d e s o u r c e , d e s i g n a t e d a s source C , i s p r e s e n t e d i n Figure 8. The oxide c o n t a i n s n a t u r a l l y occTZring oxygen; no attempt was made t o change t h e neutron y i e l d from 1 8 0 ( a , n ) by l s o t o p i c enrichment. The spectrum b e b w about 1 . 5 MeV l a u n c e r t a i n because of competition from TABLE 1 NEUTRON SOURCE DATA Source Identification A PuF4 Mass Plutonium 765 g Isotopic Composition in Weight Percent 238~u 'Pu 23 2 x 1 0 ~ ~9 3 2 4 0 ~ ~241PU 6 0.5 Size of 2 4 2 ~ u Source 3-1/2" dia. x 4-1/8" Yield Neutrons /see 5 x lo6 a Ld a, rl -r-i 0 .A k .rl d hO .d rn
© Copyright 2026 Paperzz