A scalable high-throughput method for RNA-Seq analysis of thousands of single cells Kevin Taylor 1, Lisa Watson1, Lucas Frenz 2, Doug Greiner 2, Ronald Lebofsky 2, Duc Do 2, Pallavi Shah 2, Pengchin Chen 2, Mary Ma 2, Bin Zhang 2, Preeti Pattamatta 2, Leanne Javier 2, Joshua Mopas 2, Jennifer Chew 2, Sean Cater 2, Carolyn Reifsnyder 2, Felix Schlesinger 1, Irina Khrebukova1, Jay Patel1, Charles Lin1, Jeff Tsai1, Valerie Montel1, Mariko Kellogg1, Andrej Hartnett1, Allison Yunghans1, Gary P. Schroth1, Jeremy Agresti 2 Abstract omplex biological systems are fundamentally determined by C the coordinated functions of individual cells. The transcriptional heterogeneity that drives this complexity is often masked by conventional technologies that only provide bulk transcriptome data. Although high-dimensional gene expression analysis has been enabled by RNA-Seq, it is currently still a challenge to generate thousands of single-cell NGS libraries in an affordable, high-throughput, and user-friendly manner. To truly deliver on the promise of single-cell biology, a robust technology is required that enables controlled experiments with multiple samples, treatment conditions, and time points. Here, we present the Illumina Bio-Rad Single-Cell Sequencing Solution. This new platform pairs Bio-Rad’s Droplet Digital™ Technology with Illumina NGS library preparation and analysis technology to provide a comprehensive workflow for singlecell analysis. Single cells are individually partitioned into subnanoliter droplets using a disposable cartridge on the one-touch ddSEQ™ Single-Cell Isolator. The cartridge can accommodate multiple samples, and multiple cartridges can be processed in parallel to isolate tens of thousands of cells in 1. Illumina, Inc. 2. Digital Biology Center, Bio-Rad Laboratories, Inc. a matter of minutes. Cell lysis and cell barcoding occur inside individual droplets, and single-cell-barcoded RNA-Seq libraries are subsequently prepared using Nextera® Technology. Data analysis is conducted via BaseSpace Sequence Hub®, the Illumina cloud-based genomics computing environment. This droplet-based method is agnostic to mammalian cell size, enabling unbiased profiling of diverse cell populations. Additionally, because the time from culture to lysis is on the order of a few minutes, transcriptional signatures are not affected by lengthy experimental workflows allowing for acute transcriptional responses to be detected and tracked by time course. This combination of a cost-effective, simple, and fast workflow enables new types of single cell information to be revealed by allowing users to analyze multiple samples in parallel, under multiple treatment conditions and at multiple time-points. We demonstrate reproducible interrogation of single cell transcriptomes from multiple cell types. This scalable, robust single-cell NGS sample prep methodology will enable more researchers to apply the sensitivity and precision of RNA-Seq to questions in single cell biology. Illumina Bio-Rad Single-Cell Sequencing Solution Fig. 1. Sample to answer workflow. The workflow leverages proven cell isolation using Droplet Digital technology with the ddSEQ Single-Cell Isolator, SureCell™ WTA 3’ Library Prep Kit with Nextera technology, Illumina sequencing, and BaseSpace NGS analysis. Overview of 3’ RNA-Seq Assay Second strand synthesis TTTT Bar Read 1 Code Direct cDNA Nextera tagmentation P7 Index 3 enrichment and sample indexing P5 Sequencing-ready fragment P7 Index Read 2 TTTT Bar Read 1 P5 Code Fig. 2. Overview of 3’ RNA-Seq assay. The SureCell WTA 3’ Library Prep Kit. Lysis and cell barcoding takes place in each droplet. Droplets are disrupted and cDNA pooled for second strand synthesis in bulk. Libraries are generated with direct cDNA tagmentation followed by 3’ enrichment and sample indexing. Methods HEK293 cells and NIH3T3 cells (unless otherwise noted) were mixed at a 1:1 ratio, loaded across 4 sample chambers of a single ddSEQ M Cartridge and encapsulated and barcoded by the ddSEQ Single-Cell Isolator. Barcoded transcripts were processed for single cell sequencing using the SureCell™ 3’ WTA Library Prep Kit for the ddSEQ System and sequenced on the Illumina NextSeq® 550 sequencer. Sequencing results were analyzed using the SureCell™ RNA Single-Cell App. Detection of Genes in a Heterogeneous Population of Cells RNA-Seq Analysis of 1,384 Cells Using BaseSpace Single Cell App Cells: 1384 Duplets: 5.8% Purity: 99.1% 40,000 30,000 20,000 10,000 0 0 10,000 20,000 30,000 40,000 50,000 Number of unique transcripts aligned to hg19 genes 1.0 Cumulative fraction of genic UMI Count Cumulative fraction of genic UMI Count Number of unique transcripts aligned to mm10 genes 50,000 0.8 0.6 0.4 0.2 0.0 0 2,000 4,000 6,000 8,000 Cell in descending order by genic UMI count 1e+5 1e+4 1e+3 1e+2 1e+1 1e+0 1e+0 1e+1 1e+2 1e+3 1e+4 1e+5 1e+6 Cell in descending order by genic UMI count Fig. 3A. Two-species cell mixture demonstrates low crosstalk and high purity. Number of unique transcripts aligned to mouse (red) and human (blue) genome for each cell barcode. Unique transcripts mapping to both human and mouse are shown in purple and represent doublets (left panel). Cumulated fraction of unique transcripts assigned to cell barcodes in linear scale (middle panel) and log scale (right panel). The inflection point (knee) is used to determine the number of barcoded cells detected in the run. Cell Cycle Analysis of Single Cells cttacggccgtttttggg caagtcagacccatactt atataccatagaagcacg ccacgccaccacttaaga -0.0010 gactcggtcctatcatca gctgagaagtatgatcaa caaccgacggacatgaag ggacgaacaaggtctagc agatgtttcgcatggcag cggcgtgggatcgagtga cggtccgcttgtacggac -30 -30 cttgaatggcagcataga 10 caccacgccagaaattgg 10 agtaaaagtaaagctgag 20 ctaggtcatagaatatac 20 aacagcgatcaattcgca 0.0010 atagcgccgtaattaaga 30 gcgaatttcgcacactgt 30 atacttgatcaaaagcca 0.0002 acggacttcgcagccaga 0.0002 agatgtcaccaccgcata PC2 (2.62%) 0.0004 ccgtaacggtcccttacg tSNE axis 2 0.0004 ccgtaaaacgtgacggac agcacgcttgaatcggga cactgtcggcgtgtccta aagccacgagcataagct 10 agacccaagccaagatgt -20 atagcgtgttcggactcg ccgtaatcatcattcttg ggacgattcgcaaagcca -10 aacgtgcggcgtttgctc 0.0004 cgaaagttggatgggatc 0.0006 caagtctcatcagggatc 0 ccgatgactgcagctccc gcgcggggccatctatta accttcgtcctagatcaa -0.0002 gaagggcgcataggtagg PC2 (2.62%) -0.0000 cggtccctcaatactgca cgttattcgccttaagct caaccgggacgatcagtg ggccatccacgcagaccc gaagggaagccagtttca ctaggtttcttggttaac gaaataagatgtctgtgg atccggcatagacgaaag atagcgaattgggcgaat aattgggactcggcgaat gcttgtgaagggtgcggt cagactctgtggcaaccg gtttcaactgcaccgatg gcgaattatttcatccgg cgaaaggtcggctgtgta gccagaggtaggaagcca 0.0005 atccggtgctaactcaat gcgaattggcagggtagg cctctagaggcccttgaa agtctgcctctacggtcc tcatcaagtaaaagtaaa gactcggtcctaagtaaa gcgcggtgagacagatgt gagtgacagactcttacg taagctggtaggcggtcc 0 cttgaattaagacgaaag gttaacccacgcaagtat tccaagggtagggccaga 0.0000 acggaccatagatagagg gtcctagtggtgtgctaa ctgtggctaggttgagac cgcataaacgtgaattgg ggtgctcgaaagggtgct atacttcttacggatcaa gctgagctgtggcaggag aagccatatttcgcgaat -10 aggttacgcataacccaa gcgaatgagtgataagct gtacagtgctaaccgtaa ctgtggtcagtggcttgt -0.0005 ggccatgactcgagcacg cggcgtaacgtgcataga ctattacggtccgcgcgg tccaagccacgcatagcg caagtcacccaaccacgc caaccgccgatgggattg tcagtgcttacgagtaaa atacttgctgagatccgg tSNE axis 1 ggccatcaccacgccgtt HEK293 / NIH3T3 (human/mouse) ctgtggtgagacaacagc -20 gcgaattgctaacataga atgaagagtaaatgtgta aaagaatccaagcttgaa -0.0010 cgagcattggatcggcgt caccacttgctcgggatc cctctaccgatgtgtgta attagtgatcaatgtgta cgaaagcgaaagatgaag gccgttttcttgggattg atagcgcaccaccaagtc ctgtggcatagaagcacg caagtcagtctgtgctaa -30 -30 atacttcgttatcaggag gcgaatatactttgtgta acccaagctccctaagct 0.0010 agtaaagctcccgagtga aattggctaggttgttcg aggttaagtaaatgcggt -0.0006 tatttcttaagacgcata -0.0006 atacttagtctggggatc -0.0004 aacgtgcagactgtacag -0.0004 cactgtaagtattttggg acccaaggccatcactgt 10 ggccataacagcctgtgg 10 accttcaagtatgtacag Total cells: 602 mm10 cells: 558 hg19 cells: 43 Sub-population: 7% cgaaaggaggcccgagca tSNE axis 2 30 actgcaagcacggggatc -20 gccagatctagcgatcaa taatagcttgaaggacga gttaacaggttaaagcca gtggtgggccatttggat cggtcctcatcatcggga -10 ggacgactaggtgttaac 0 cctctaattagttaagct -0.0002 ctgtggcatagaaacgtg -0.0000 ctattactattaagtaaa PC2 (2.62%) 0.0002 taagctacccaataatag acaaggtagaggctatta gcgcggttggatgagtga acaaggtaccgagccgtt atatacagcacgcgcata acggacttggatacggac aagtataggttattaaga gaaataagtctgcactgt ggattggccagatggcag taagctgtggtggccaga ctaggtccacgctaagct cgcataatactttatttc gagtgactaggtagatgt cagacttgaattcataga ctcaattgctaagggatc ctgtggcgagcaaggtta cttgaatgcggtcaggag caccacgctgagcaccac cttacggggatcaggtta agcacgtctagcctgtgg 0.0005 ctgtgggatcaaagtaaa tatttcagtaaaagatgt agaccctcgggaggtgct cgcatacagactcgaaag gactcggatcaacataga 0 cggtcccatagacgaaag accttcgggatcggattg caccacatatactggcag ccacgctgcggtacggac cttgaaagtctggtcggc tagaggcagactgcgcgg 0.0000 agaccccatagaatatac cgagcaatatacccacgc cggtccttggatgctgag gatcaaacccaagaggcc gcgaatatagcgcactgt -10 cttgaacatagatatttc acccaaatccggcataga aacagcgactcgactgca aacagcccacgcgactcg gagtgacttacgatactt gccagagactcgccgtaa gagcttcgagcaaagcca -0.0010 -0.0005 ctaggtaggttacgagca atagcgtcagtgcagact cactgtgaaggggtggtg atatacttcgcagactcg cagactcagacttcagtg caagtcttggatggccat -20 caccacgaaggggtttca aggttatgcggtgccgtt ggccatacaaggttaaga accttcctgtggccgatg ccgatggctgagtttggg gagtgatctagcaattgg cggtccttcttggtcggc cttacgtccaagaagtat gctgaggcgaatcgttat gcgcgggcttgtttggat caccacctaggtactgca aagtatggattgggacga -30 -30 aagtattcgccttgtgta cctctaacccaagccgtt aagccagccagatgtgta caggagcagacttgtgta ctcaattaatagacccaa cactgtatactttggcag 20 ggtgctcgcatacggtcc gtcggccgcatacagact gcttgtaaagaaccacgc gaaataaaagaaacaagg atgaagcaaccggcgaat agcacgtaccgacgcata aacgtgaacgtgcgagca ctattaatacttagatgt ctattatgagacgtcggc tSNE axis 2 0.0006 0.0006 -0.0000 -0.0002 -0.0004 -0.0006 PC1 (66.22%) PC1 (66.22%) -0.0005 PC1 (66.22%) -20 -10 0.0000 HEK293 / NIH3T3 (human/mouse) hg19 RPL13 mm10 Rpl13 tSNE axis 1 tSNE axis 1 0 hg19 RPL13 mm10 Rpl13 0.0005 0.0010 Fig. 3B. PCA clustering of 1:1 mixture of mouse and human cells detects distinct population. (Left) PCA analysis of 1,384 cells from a 1:1 ratio mixture of HEK293 and NIH3T3 cells using the Illumina BaseSpace single cell application. Cells color-coded by gene expression of human RPL13 gene (middle) or mouse Rpl13 (right). 0 -10 -20 10 Fig. 3C. T-SNE analysis identifies a sub-population in a heterogeneous cell mixture. A mixture of mouse cells spiked with human cells. The human cells (representing 7% of the total cell population) are identified as a distinct cluster in t-SNE analysis based on gene expression profile (left). Cells color-coded by gene expression of human RPL13 gene (middle) or mouse Rpl13 (right) confirm the identity of the sub-population. G1/S G1/S G2/M S S G2/M M/G1 M M M/G1 ExpressionExpression LowAverage AverageHigh Low High Fig. 4. Heat map based on the cell cycle by counting unique cell cycle transcripts. Cell cycle state based on unique transcript counts of genes in each cell cycle, normalized by total count for each cell for a mixture of HEK293 and NIH3T3 cells lines. Expression is centered by the median and scaled by the median absolute deviation for each cell cycle. Sensitivity of Gene Detection Across Varied Cell Lines Sensitivity of gene detection across varied cell lines and at varied read depths 7,000 7,000 6,000 6,000 Mouse genes detected Human genes detected A 5,000 4,000 3,000 2,000 Rep 1 1,000 Rep 2 5,000 4,000 3,000 2,000 0 0 50 100 150 200 Rep 1 1,000 Rep 2 0 250 0 50 100 150 200 250 Reads Per Cell (x1000) NIH3T3 Genes vs Reads Per Cell Reads Per Cell (x1000) HEK293 Genes vs Reads Per Cell Fig. 5A. Replicate samples processed using a single cartridge were sequenced on NextSeq 550 and sequencing reads were sub-sampled to varied reads per cell ranging from 25,000 reads to 200,000 reads per cell. The median genes detected per cell are plotted at each sequencing depth. Gene count - Rep 2 106 10 5 104 103 y=-0.0015+0.98x R2:0.975 NumGenes:10.911 102 101 101 102 103 104 105 106 Gene count - Rep1 Fig. 5B. Reproducibility of gene expression for two replicates. Linear regression fit of gene counts (for genes with ≥ 50 counts) summed across all HEK293 cells, from two samples processed on a single chip shows high reproducibility. 7,000 Median Genes Detected C B 6,000 5,000 4,000 3,000 A20 3T3 HEK BJ 10 15 20 25 2,000 1,000 0 0 Average Cell Diameter, µm Fig. 5C. Sensitivity of gene detection across a panel of cells of varied diameter. The median genes detected per cell versus the cell diameter shows that recovery of transcripts is not limited by cell size. Conclusions •• The Illumina Bio-Rad Single-Cell Sequencing Solution can reproducibly partition and analyze thousands of single cells in sub-nanoliter droplets from multiple cell lines in minutes with a simple protocol without pre-amplification. •• Analysis of human and mouse cell line mixing experiments demonstrates the ability of this platform to distinguish cells in a heterogeneous population by gene expression profiles. •• Robust chemistry allows for a high percentage assignment of transcripts to single cell barcodes in multiple cell lines. •• Transcriptional variation can be measured in single cells by analyzing changes in cell cycle gene expression. •• High sensitivity of gene expression is detected across a number of cell types and is not impacted by cell diameter Visit www.bio-rad.com/ddSEQ for more information. For Research Use Only. Not for use in diagnostic procedures. © 2017 Illumina, Inc. | Bio-Rad Laboratories, Inc. All rights reserved. Pub No. 1070-2016-013 Bulletin 6883 Ver B 16-1124 1116
© Copyright 2026 Paperzz