Solutions7

Problem 14.1. HFrom Book HullL aL
In[59]:=
In[60]:=
Out[60]=
95 % standard deviation of normal distribution is - 1.65, N H- 1.65L = 0.05
stdpf :=
Sqrt@H100 000 ´ 0.01L ^ 2 + H100 000 ´ 0.01L ^ 2 + 2 ´ 0.3 ´ 100 000 ´ 0.01 ´ 100 000 ´ 0.01D
stdpf
1612.45
The biggest loss in 5 days at 95 % probability level is :
In[61]:=
varloss := Sqrt@5D 1.65 stdpf
In[62]:=
varloss
Out[62]=
5949.16
In[63]:=
In[64]:=
Out[64]=
The minimum value of the portfolio at 95 % probability in 5 days HVaRL is then :
VaR := 200 000 - varloss
VaR
194 051.
bL
Correlation is 0.
In[65]:=
In[66]:=
Out[66]=
stdpf1 := Sqrt@H100 000 ´ 0.01L ^ 2 + H100 000 ´ 0.01L ^ 2D
stdpf1
1414.21
In[67]:=
varloss1 := Sqrt@5D 1.65 stdpf1
In[68]:=
varloss1
Out[68]=
5217.76
In[69]:=
VaR1 := 200 000 - varloss1
In[70]:=
VaR1
Out[70]=
194 782.
cL Correlation is 1.
In[71]:=
In[72]:=
Out[72]=
stdpf2 := Sqrt@H100 000 ´ 0.01L ^ 2 + H100 000 ´ 0.01L ^ 2 + 2 ´ 1 ´ 100 000 ´ 0.01 ´ 100 000 ´ 0.01D
stdpf2
2000.
In[73]:=
varloss2 := Sqrt@5D 1.65 stdpf2
In[74]:=
varloss2
Out[74]=
7379.02
In[75]:=
VaR2 := 200 000 - varloss2
In[76]:=
VaR2
Out[76]=
192 621.
dL 200 000 dollars in asset A
2
invjarahdemo72011.nb
In[77]:=
stdpf3 := Sqrt@H200 000 ´ 0.01L ^ 2D
In[78]:=
Out[78]=
stdpf3
2000.
In[79]:=
varloss3 := Sqrt@5D 1.65 stdpf3
In[80]:=
varloss3
Out[80]=
7379.02
Thus the same as in case cL.
Problem 14.15.
The daily standard deviation is :
In[81]:=
In[82]:=
Out[82]=
stdday :=
[email protected] ´ 300 000L ^ 2 + H0.012 ´ 500 000L ^ 2 + 2 ´ 0.6 ´ 0.018 ´ 300 000 ´ 0.0012 ´ 500 000D
stdday
8309.51
N H0.975L has value 1.96; thus 97.5 % z value is - 1.96
The maximum loss in 10 days at 97.5 % probability is :
In[83]:=
Varlosses := Sqrt@10D stdday 1.96
In[84]:=
Varlosses
Out[84]=
51 502.9
In[85]:=
VaR3 := 800 000 - Varlosses
In[86]:=
VaR3
Out[86]=
748 497.