Problem 14.1. HFrom Book HullL aL In[59]:= In[60]:= Out[60]= 95 % standard deviation of normal distribution is - 1.65, N H- 1.65L = 0.05 stdpf := Sqrt@H100 000 ´ 0.01L ^ 2 + H100 000 ´ 0.01L ^ 2 + 2 ´ 0.3 ´ 100 000 ´ 0.01 ´ 100 000 ´ 0.01D stdpf 1612.45 The biggest loss in 5 days at 95 % probability level is : In[61]:= varloss := Sqrt@5D 1.65 stdpf In[62]:= varloss Out[62]= 5949.16 In[63]:= In[64]:= Out[64]= The minimum value of the portfolio at 95 % probability in 5 days HVaRL is then : VaR := 200 000 - varloss VaR 194 051. bL Correlation is 0. In[65]:= In[66]:= Out[66]= stdpf1 := Sqrt@H100 000 ´ 0.01L ^ 2 + H100 000 ´ 0.01L ^ 2D stdpf1 1414.21 In[67]:= varloss1 := Sqrt@5D 1.65 stdpf1 In[68]:= varloss1 Out[68]= 5217.76 In[69]:= VaR1 := 200 000 - varloss1 In[70]:= VaR1 Out[70]= 194 782. cL Correlation is 1. In[71]:= In[72]:= Out[72]= stdpf2 := Sqrt@H100 000 ´ 0.01L ^ 2 + H100 000 ´ 0.01L ^ 2 + 2 ´ 1 ´ 100 000 ´ 0.01 ´ 100 000 ´ 0.01D stdpf2 2000. In[73]:= varloss2 := Sqrt@5D 1.65 stdpf2 In[74]:= varloss2 Out[74]= 7379.02 In[75]:= VaR2 := 200 000 - varloss2 In[76]:= VaR2 Out[76]= 192 621. dL 200 000 dollars in asset A 2 invjarahdemo72011.nb In[77]:= stdpf3 := Sqrt@H200 000 ´ 0.01L ^ 2D In[78]:= Out[78]= stdpf3 2000. In[79]:= varloss3 := Sqrt@5D 1.65 stdpf3 In[80]:= varloss3 Out[80]= 7379.02 Thus the same as in case cL. Problem 14.15. The daily standard deviation is : In[81]:= In[82]:= Out[82]= stdday := [email protected] ´ 300 000L ^ 2 + H0.012 ´ 500 000L ^ 2 + 2 ´ 0.6 ´ 0.018 ´ 300 000 ´ 0.0012 ´ 500 000D stdday 8309.51 N H0.975L has value 1.96; thus 97.5 % z value is - 1.96 The maximum loss in 10 days at 97.5 % probability is : In[83]:= Varlosses := Sqrt@10D stdday 1.96 In[84]:= Varlosses Out[84]= 51 502.9 In[85]:= VaR3 := 800 000 - Varlosses In[86]:= VaR3 Out[86]= 748 497.
© Copyright 2026 Paperzz