~88 Chap~ee 2 Differentiation Review Exercises for Chapter 2 1. f(x): x~ - 4x + 5 f’(x) : limf(X + Ax)- f(x) = lim I(x+ Z~C)2 -- 4(x+ Ax--~ 0 Ax)+ 51- Ix~- 4x+ 51 z~C = lira (x2 + 2x(Ax)+ (Ax)2- 4x- 4(Ax)+ 5)-(x~- 4x+ 5) = lim2X(AX)+(Ax)2 -4(Ax)Axe0 = lim(2x+ Ax-4) = 2x-4 2. f(x) : "v/Tx + 1 = lim &~---~ o N/~x 1 1 + Ax + 4x 2~x 3. ~tx~_ x + 1 x-1 x + zDc+ 1 -x+l t"’(x] = limf(X+ Ax)-f(x) = lim x+Ax- 1 x-1 ~-~ o Ax ~x ~ o z~c = lim(X+Ax+l)(x-1)-(x+As-1)(x+l) kx(x + koc - 1)(x - 1) = lim(X2 +xAx+x-x-Ax-1)-(x2 +xAx-x+x+Ax-1) ~x(x + ~x- 1)(, - 1) f’(x) : lim f(x + kx)- f(x) 66 lim x + Ax x= lim6X-(6x+6kx) = lim -6Ax ~--,o ~(x + ~)~ ~-,o~(x + = lim -6 -6 ~-,o(x + ~).~ -x~ 5. fis differentiable for all x 3. 6. fis differentiable for all x ~: -1. © 2010 Brooks/Cole, Cengage Learning Review Exercises for Chapter 2 189 12. (a) Using the limit definition, f’(x) - -2 (a) Continuous at x = 2 (b) Not differentiable at x = 2 because of the sharp turn in the graph. Also, the derivatives from the left and right are not equal. At x = 0, f’(0) = -2. The tangent line is y - 2 = -2(x - o) Y y = -2x + 2. 7 6 54- x I 2 3 4 5 6N IX2 q- 4X2, + 2, X < --2 --2 8o f(x)= [1--4X--X if if X_> (a) Nonremovable discontinuity at x = -2 (b) Not differentiable at x = -2 because the function is discontinuous there. Using the limit definition, you obtain g’(x) =~-X4 -- -~. At X = --1, g’(-1) - 4 1 __ 3 3 6 2" 10. Using the limit definition, you obtain h’(x) = 3-~_ 4x. At X = --2, 13. g’(2)= limg(X) - g(2) x-~2 x - 2 limX2(X - 1) - 4 x-~2 x - 2 X3 -- X2 -- 4 lim x-+2 X -- 2 (x-2)(x2 +x+2) = lim x-,2 x-2 2 = lim(x + x+ 2] = 8 x--~2\ 14. f’(3) = limf(x) - f(3) x-~3 X -- 3 11 x = lira + 4 7 x--,3 x - 3 7-x-4 = lim. x~3(x- 3)(x + 4)7 -1 1 = lim. =-~ x-~3(x + 4)7 49 15. y = 25 ---.~2 h’(-2) = ’g -4(-2)11. (a) Using the limit definition, f’(x) = 3x2. At x = -1, f’(-1) = 3. The tangent line is y -(-2) = 3(x -(-1)) y = 3x+l. (b) 4 (b) 12~_ 11" _-2-3- (x+l) .2 y’ = 0 16. y =-30 y =0 17. S(x) = x~ St(X) = gX7 18. g(x) : x2° g’(x) = 20x19 © 2010 Brooks/Cole, Cengage Learning Chapter 2 Differentiation Y 20. 21l. f(x) : x3 - l lx2 f’(x) = 3x2 - 22x 22° g(s) = 4S4 - 5S2 f’ > 0 where the slopes of tangent lines to the graph of fare positive. g’(s) = 16s3 - lOs 23. htx) = + = + 6x|/~ 3 3xl/3 32. 1 ~4o f(x) = X112 - X-112 =2 25. g(t)= 3 -~x3--/~ 2 f’ = 0 where the slopes of tangent lines to the graph of fare 0. t-2 g’(t) = -4t-~ - 43 3 3t 33. 26. h(x)= lOx-2 49 F = 200x/’~ 100 (a) When T = 4, F’(4) = 50 vibrations/sec/lb. h’(x)= --x-20 -3 _ 20 49 49x3 27. f(O) = 40 - 5 sin 0 f’(O) = 4-5cosO (b) When T = 9, F’(9) = 33½ vibrations/sec/lb. 34. s = -16t2 + so First ball: -16t2 +100 = 0 28. g(a) = 4cos~ + 6 g’(a) = -4 sin a ~/ 16 10 - 2.5 seconds to hit ground 4 sin 0 29. t°(O] : 3 cos 0 - -4 cos 0 f’(O] = -3 sin 0 - -4 30. g(a)- 5 sin a 3 gqa~t 1 - 5cosa 3 Second ball: -16t2 + 75 = 0 t2 = 7~ 2a ~ 2.165 seconds to hit ground 4 Because the second ball was released one second after the first ball, the first ball will hit the ground first. The second ball will hit the ground 3.165 - 2.5 = 0.665 second later. 2 35. s(t) =-16t2 + So s(9.2) = -16(9.2)2 + So = 0 So = 1354.24 The building is approximately 1354 feet high (or 415 m). © 2010 Brooks/Cole, Cengage Learning Review Exercises for Chapter 2 191 36° s(t) = -16t2 + 14,400 = 0 16t2 = 14,400 38° t = 30 sec Because 600 miih = ~gmi/sec, in 30 seconds the bomb will move horizontally (-~)(30) = 5miles. 128 37. (a) 322 (a) y = x __--Tx = x 1 - 15- Vo 2 I0- ~ = 0ifx = 0orx = v°-32 5- 20 40 [ ~-x Total horizontal distance: 50 (b) 0 = x - 0.02x2 o: o) mp.os (c) Ball reaches maximum height when x = 25. (d) y = x - 0.02x~ y’ = 1-0.04x y’(0) = 1 y’(10) = 0.6 y’(25) = 0 y’(30) = -0.2 Projectile strikes the ground when x = Vo2/32. Projectile reaches its maximum height at x = V02/64 (one-half the distance). 64 (b) y’ = 1 Tx vo When x = v°--~-~ y’= 1-64(v°2/ = 0. 64’ V02 ~ 64 ) (c) y = x ..-Tx = x 1-_.-~-x = 0 Vo Vo when x = 0 and x = So2/32. Therefore, the range is x = Vo2/32. When the initial velocity is doubled the range is (2Vo)2 4Vo2 X -- /(50) -- -1 (e) y’(25) = 0 -- 32 32 or four times the initial range. From part (a), the maximum height occurs when x = Vo2/64. The maximum height is Y ~ 64 Vo2 ~, 64 ) 64 128 128" If the initial velocity is doubled, the maximum height is F(2Vo)z] (2Vo)= .(V02 ~ 128 = 4/1-~) or four times the original maximum height. (d) Vo = 70 ft/sec V02 -- (70)2 - 153.125 it 32 32 2 2 Maximum height: yVo- (70) 38.28 it 128 128 Range: x 5O © 2010 Brooks/Cole, Cengage Learning 192 Chap,er 2 Differentiation 39° x(t) = t2 - 3t + 2 = (t- 2)(t-1) 45° f(x) - (a) v(t) = x’(t)= 2t- 3 X2÷X--I x= -1 f’(x) = (x’ - 1)(2x + !)- (x2 + x - 1)(2x) (b) v(t) < 0 for t < 2_3 (c) ,,(~) = o for ~ = _32 =- 1 4 (d) x(t) = 0fort = 1,2 6x - 5 46. v(1) = 2(1)-3 = 1 f’(x) : (x2 + 1)(6) -(6x - 5)(2x) ~(2) =12t21 - 3 = ~ The speed is 1 when the position is 0. 40. (a) y = 0.14x2 -4.43x+ 58.4 (b) 320 47. f(x) : (9 - 4x2)-’ c f’(x) : -(9 - 4x2)-2(-8x) - 60 o 8x (C) 12 48. f(x)= 9(3x2- 2x)-1 18(1- 3x) f’(x) = -9(3x~- 2x)-=(6x- 2)= (3x~ 2x)~ (d) If x = 65, y ~ 362 feet. (e) As the speed increases, the stopping distance increases at an increasing rate. 49. y- COS X y, : (COS x) 4x3 - x4(-sin x) COS2 X 41. f(x)= 4x3 cos x 4- x4 sin x s’(-) : (5x~ + 8)(2x - 4) + (x~ - 4x - 6)(10x) --- IOx3 + 16x = 4(5x3 -15x2 -11x- 8) 42. g(x): COS2X - 20x; - 32 + lOx~ - 40x~ - 60x =20x~-60x~-44x-32 g’(x) = X4 50. y- x4 sin x Y’ : (x4) cos x -(sin x)(4x~) x cos x - 4 sin x (; + 7x)(x + 3) (X34- 7X)(1)4-(X 4- 3)(3x2 + 7) 7x + 3x3 4- 9x2 4- 7x + 21 4x3 +9x2 +14x+21 X34- 43. h(x): ~x sin x = X1/2 sin x 1 h’(x) : ~ sin x + U;zcos ~< x5 51. y = 3x= sec x y’ = 3x= sec x tan x + 6x sec x 52. y = 2x-x2tanx y’ = 2 - x2 sec2 x - 2x tan x 53. y = xcosx-sinx y’ =-xsinx+cosx-cosx =-xsinx 44. f(t) = 2t5 cos t s’(O : 2tS(-sin t) + cos/<(10’4) -- -2/5sin t + lO/4cos t © 2010 Brooks/Cole, Cengage Learning Review Exercises for Chapter 2 54° g(x) = 3x sin x + x2cos x g’(x) = 3xcosx + 3sinx-x2sinx+ 2xcosx 193 90t 4t + 10 a(t) = (4t + 10)90- 90t(4) (4t + 10)2 900 _ 225 2 (4t + 10) (2t + 5)2 6~}. v(t) - = 5x cos x + (3 - x2)sin x 55. f(x) - x2 - 2x - x-2, (1,1) f’(x) = 2 + 2x-3 90 (a) v(1) = -- ~ 6.43 ft/sec 14 f’(1) = 4 a(1) = 22___~5 ~ 4.59 ft/sec2 49 Tangent line: y - 1 = 4(x - 1) y = 4x-3 (b) v(5)= 90(5) _ 15 ft/sec 30 a(5) - 225 _ 1 ft/sec2 152 56. f’(x) = (x-1)-(x + 1) (X-1)2 -2 (c) v(10) - 90(10) _ 1S ft/sec 50 a(10) - 225 _ 0.36 ft/sec2 252 _2_ = (1/4) s Tangent line: y + 3 =-8IX - ~) y = -8x + 1 61. g(t) = -8t3 - 5t + 12 g’(t) = -24t2 - 5 g"(0 = -48, 57. f(x) = -x tan x, (0,0) f’(x) = -x sec2 x - tan x s’(o) = o 62. h(x) = 21x-3 + 3x h’(x) = -63x-4 + 3 Tangent line: y - 0 = 0(x - 0) y=0 h"(x) = 252x-’ 63. 58. f(x) - 1-cos ’ f’(x) = (1 - cos x)(-sin x) -(1 + cos x)(sin x) (1 - cos x)2 -2 sin x (1 - cos x)2 252 x5 f(x) = 15x5/2 f’(x) ="~-x75 3/2 f"(x)= 2254.. 1-1/2 = --~-’,4x225/’- 64. f(x) = 20s~x = 20x115 f’(x) = 4x-415 f"(x) = -16x-9/5 - 915 16 5 5x 65. f(O) = 3tan 0 f’(O) = 3 sec2 0 y = -2x+l +~r 59. v(t) = 36-t2, 0 < t < 6 a(t) = v’(,)= -2t v(4) = 36 -16 = 20 rn!sec a(4) = -8 rn!sec2 f"(O) = 6 sec O(sec 0 tan 0) = 6sec20tan0 66. h(t) = 10 cos t - 15 sin t h’(t) = -10 sin t - 15 cos t h"(t) = -10 cos t + 15 sin t © 2010 Brooks/Cole, Cengage Learning ~4 Chapter 2 Differentiation y = 2sinx + 3cosx y = 2cosx-3sinx y = -2sinx-3cosx y"+ y =-(2sinx+3cosx) + (2 sinx+ 3cosx) =0 68. y= (10 - cos x) 75° y= x 2 Y’-21 sin 2x 4 41 cos 2x(2) - cos 2x)= sinZx = ½(1 sec5 x 7 5 6 y’ = sec x(sec x tan x) - see4x(sec x tan x) %° y- sec7 x x = secSxtanx(sec2x -1) = sec5 x tan3 x xy + cos x = 10 xy’ + y - sin x = 0 xy + y = sin x 2. 3/2 x--sin2. 7/2 x 77° y =-sin3 7 y’= sin~/2x cos x - sin5/2x cos x ( x+5)2 h’(x) : = (cos x)si~(1- sin2x) = cos3x.~sin x 3t(0- 2¢x+5 ~x-~-~+ ~t (;+ ~)~ 2(x + 5)(-x2- l Ox + 3) (; +,3)3 70. S(x)= x -t- 78. S(x)- ~3x+ 1 3(x2 + I)I/2- 3x#(xz + l)-I/Z(2x) f’(x) = x2 + 1 3(X2 ÷ 1)-3X2 f’(x) = 5(x2 + 1 4 (; ÷ 0~,~ _1 79. y- 71. f(s) = y’ S’(~) : 80. y- n. h(o)- ~’(o) = yt ~ 0 (1 - o)~ (I- O)~ - 013(I- (1- 0)6 (1-0)~(1-0+30) _ 20+1 (1 - O)6 (1 i 0)4 73. y = 5 cos(9x + 1) 3 (; ÷ 0~,~ sin x+2 (x + 2)~ cos ~x - sin ~x (x+2)z cos(x- 1) x-1 -(x - 1)sin(x - 1) - cos(x - 1)(1) (x-l)z 1_ F(x -1)sin(x -1) + cos(x - 1)l (x 1)z SL S(x)= ,/7- x3 i3X2 f’(x) : ~(1-x3)-l/2(-3xz) 2x/~- x3 -12 f’(-2)- 2(3)--2 y’= -5 sin(9x + 1)(9)= -45 sin (9x + 1) 74. y = 1 - cos 2x + 2 COS2X y’ = 2 sin 2x - 4 cos x sin x = 2[2 sin x cos x] - 4 sin x cos x =0 82. f(x) = 3wr-~x2 -1 :,(x) : ~(x, - ,)-~’~(~x) : 2x 2(3)_ 1 f’(3)- 3(4) 2 ©,2010 Brooks/Cole, Cengage Learning Review Exercises for Chapter 2 1 2 = -csc 2x cot 2x y = - csc 2x =0 84. y = -4/-5-~x(x + 2)3 3(x + 2)2(7x + 2) 2-~x y’ does not equal zero for any x in the domain. The graph has no horizontal tangent lines. Y= Y = csc 3x + cot 3x y’ = -3 csc 3x cot 3x - 3 CSC2 3x 75 = 0-3 = -3 8S. g(x) : 2x(x + 1) x+2 g’(x) - (x + 1)3/~ 89. f(t) = t2(t-1)5, (2, 4) (a) f’(t) = t(t- 1)4(7t- 2) f’(2) = 24 (b) y- 4 = 24(t- 2) y = 24t - 44 -2 (c) 5" 4" 3" g’ does not equal zero for any value ofx in the domain. The graph ofg has no horizontal tangent lines. (2, 4) 21" 86. f(x) = E(x - 2)(x + 4)~2 = (x2 + 2x - 8)2 f’(x) = 4(x3 + 3x2 - 6x - 8) = 4(x- 2)(x + 1)(x + 4) The zeros of f’ correspond to the points on the graph of fwhere the tangent line is horizontal. lOO \ 87. f(t) = ~,/7-~ ~-~/7 + 1 f(t) = (t + 1)~/2(t + 1)’13 = (t + 1)5/6 6(1 + 1)1/6 f’ does not equal zero for any x in the domain. The graph off has no horizontal tangent lineg. 5 x2 (a) g’(x) = x/xz + 1 + ~ g’(3)- 19x/ri-6 lO J -6O f’(t) - S 90. g(x)=x~, (3,3x/i-~) (b) y - 3x/i-6 - 19~i~-(x - 3) 19-x/’i"d 27-~ti-6 10 10 (c) 108" 6" 4" 2" © 2010 Brooks/Cole, Cengage Learning 196 Chapter 2 Differentiation 95. f(x) = cot x 91. f(x) = tan ~- x, (-2, tan f’(x) = -csc2x -1 (a) f’(x) = 2.,fi- x cos2xfi- x f"(x) = -2 csc x(-csc x. cot x) = 2 csc2x cot x f’(-2) - 6 cos2x/~ ~ -11.1983 96. y = sin2x (b) y - tan-,/-5 - 6 cos2 (x + 2) y’ = 2sinxcosx = sin2x y" = 2cos2x (x + 2)-,/~ Y = 6 cos2-,/~ + tan-,!~ (c) 97. y 4t2 f(O - (1- t)a f’(,) _ 8t (1- ~)3 f"(t)- 8(21 + 1) (1- 1)4 6x - 5 98. g(x) - ~ + 1 92. S(x)= 2 csc3(~x)- 2 g’(x) = 2(-3x2 + 5x + 3) (1, 2 csc3(1)) (x2 +1)2 g"(X) = 2(6x3 - 15x2 -18x + 5) (a) S’(x)= -4’7 sin4(~x) f’(1) - -3 cos(l) sin4(1) 99. g(O) = tan 30 - sin(O - 1) g’(O) = 3 sec2 30 - cos(O - 1) -3 cos(l). (b) Y - 2 csc3(1)’" ~n-~ (x-1) y- x -3 cos(l) (c) 2 g"(O) = 18 see2 30 tan 30 + sin(O - 1) 3 cos(l) sin 4(1) 100. h (x) = 5 X4 X2 l 16 2 - 80 h’(x) = lOx ",,/x2 - 16 3 - 240x 4321- h"(x) = lOx 93. y = 7x2 + COS 2x y’ = 14x-2sin2x y" = 14-4cos2x 94. y = x-1 + tan x y’ = -x-2 + sec2 x y" = 2x-3 + 2 sec x(sec x tan x) 2 = --3 + 2 sec2x tan x x © 20!0 Brooks/Cole, Cengage Learning Review Exercises for Chapter 2 197 700 101o T = a t + 4t + 10 v : 2x/~ = N/r~-32)h = 4 dv T = 700(t2 + 4t + 10)-1 Tr = dv 4 -- dh = -3ft/sec. (a) Whenh = 9, -1400(t + 2) (b) When h = 4,--dv = 2 ft/sec. dh (a) When t = 1, T’ = -1400(1 + 2) ~ -18.667 deg/h. (1 + 4 + 10)2 103o (b) Whent = 3, -1400(3 + 2) ~ -7.284 deg/h. Tr = (9 + 12 + 10)2 X2 q- 3xy + y3 = 10 ’ 2x + 3xy’ + 3y + 3y2y = 0 3(x + y2)y, = -(2x + 3y) y,= -(2x + By) (c) Whent = 5, -1400(5 + 2) ~ -3.240 deg/h. T’= (25 +20+10)2 y2 = x3 _x2y+xy_y2 104. 0 = X3 -- x2y (d) Whent = 10, + xy - 2y2 0 = 3x2 - x2y’ - 2xy + xy’ + y - 4yy’ (x2 - x + 4y)y’ = 3x2 - 2xy + y T’ -1400(10 = + 2) ~ -0.747 deg/h. (100 + 40 + 10)2 3x2 - 2xy +y Y’ = x2 -x+4y x - 4y 105. xy’+ y = 24- - 84-gy’ x + 8x/-~y’ = 2~-~- - y 2~/’-~- y _ 2(x- 4y)- y 2x - 9y x + 8~-~ x + 8(x - 4y) 9x - 32y y-,/-~x- xx/"f = 25 106. yl~x-i/2) + xl/2y’ - _ yl/2 = 0 2~x 2xi"~ - x 2y~x- YX/-f 2xx/-f - © 2010 Brooks/Cole, Cengage Learning Chapter 2 Differentiation cos(x + y)= u xsiny = ycosx 197o (x cos y)y’ + sin y = -y sin x + y’ cos x -(1 + y’)sin(x + y)= 1 y’(x cos y - cos x) = -y sin x - sin y ysinx+ siny y= cosx-xcosy X2 q- y2 -y’sin(x + y)= 1 + sin(x + y) Y’= l+sin(x~) =-csc(x~-in---~- = 10 2x + 2yy’ = 0 --X y At (3, 1), y’ = -3 4 Tangent line: y-l=-3(x-3)~3x+y-10=o Normal line: y-l= x- ___1( 3) ~- x 3y = 0 3 112o Surface area = A = 6x2, x = length of edge 119. x2 - y2 = 20 2x - 2yy’ = 0 dx x dA dt 3 At (6, 4), y’ = 2 Tangent line: 3 6) y-4 = -~(x3 y = --x-5 2 2y-3x+10 = 0 Normal line: 12xdX dt 12(6.5)(8) 624 cm2/sec 113. s 1/2h 2 dV -1 dt 2 6) y - 4 = -~(x 2 y = --x + 8 3 3y+2x-24 = 0 ’2 Width of water at depth h: w=2+2s=2+2/¼h/= 4+h2 V= -~(2+--h= 4 -~ hI(8+ -~ h )h 111. -: = 2 units/sec dt => -- = 2x/Txdy = 4x/Tx dt 2xitTx dt dt dt 1 dx _ 2x/~ units/sec. (a) Whenx - 2’ dt dt (4 + dt dh _ 2(dV/dt) ~t 5(4 + h) 1_ (b) When x = 1,--dx = 4 units/sec. dt dh 2dt 25 When rn/min. 2 (c) When x = 4,--dx = 8 units/sec. dt © 2010 Brooks/Cole, Cengage Learning + 1)-1 Problem Solving for Chapter 2 199 tan0 = x dO -- = 3(2rc] rad/min dt 114. s = 35 = 60-4.9tz 4.9tz = 25 5 dt dt 1 tan 30 - ~- - x(t) When x = -~, dr w/-~ds = x/~(-9.8)~-4.9 ~ -38.34 m/sec dt dt s(t) 30° x(t) Problem Solving for Chapter 2 1. (a) x2 +(y-r)2 = r2,Circle x2 = y, Parabola Substituting: y2 3 (y- r)2 = r2 _ y _ 2ry + r2 = r2 - y y2 -2ry+y = 0 y(y- 2r + 1) = 0 Because you want only one solution, let 1 - 2r = 0 ~ r = -. Graph y = x2 and X2 + 2 (b) Let (x, y) be a point oftangency: x2 +(y-b)2 : 1 ~ 2x+ 2(y-b)y’ = 0 ~ y’ - x ,Circle b-y y = x~ ~ y’ = 2x, Parabola Equating: 3 x 2(b - y) = 1 b-y=-~ b 1=y+- 1 2 2 Also, x2 + (y - b)~ = 1 and y = x2 imply: 1 3 5 = 1 ~ y+- = 1 ~ y =-andb =4 4 4 y+(y-b)~ =1 ~ y+ y- y+ Graphy = x2and x2 + y- = 1. © 2010 Brooks/Cole, Cengage Learning
© Copyright 2026 Paperzz