Patterns and Algebra – AP Book 8, Part 2: Unit 4 6. 1. 7. 2. 3. 4. a) 1 b) –8 c) –3 d) –5 e) 2 f) 8 g) –17 h) –15 i) 26 j) 19 k) –33 l) 39 a) –6 b) –12 c) 12 d) –63 e) –8 f) 5 g) –6 h) –2 i) 18 j) 8 k) –33 l) –7 b) –3 c) –18 d) 4 f) 6 g) –2 h) –19 i) –14 j) –51 k) –9 l) –26 m) –19 n) –15 o) –29 p) –6 h) and m), since: 3(–7) + 2 = 2 + 3(–7) 5. a) 18°C, 27°C, 9n°C b) (–60 + 9n)°C c) –33°C d) n = –3; –87°C V‐24 8. 9. 3 –2 a) 63 + 5w –1 b) w = –5; $38 0 0 –5 Teacher to check guess and check. a) i) –6, –6, –6, –6 1 –3 –8 a) ii) –8, –8, –8, –8 2 –6 –11 b) 2 c) –3 d) –6 iii) –10, –10, –10, –10 iv) –20, –20, –20, –20 b) Circle: all but 2a b) –35 c) –12 d) 14 f) –6 g) –2 h) 23 i) 3 –9 –14 4 –12 –17 5 –15 –20 b) 2. i) –4 ii) 5 iii) –2 iv) 2 a) x + (–4) –3 –15 5 1 0 –12 4 0 j) 49 –9 3 –1 l) –6 –6 2 –2 m) 8 –3 1 –3 n) 9 0 0 –4 o) 25 x 3 –1 –5 BONUS 30 6 –2 –6 q) –2 9 –3 –7 r) –1 12 –4 –8 s) –9 15 –5 –9 18 –6 –10 –5 u) 2 a) b) False; Counter-example will vary – teacher to check. Sample: If a = –2, then 3a = –6 > –10 = 5a b) True c) True d) False; 3. b) ÷ (–3) c) ÷ (–5) d) + (+5) e) – (–7) f) × (–9) g) × (–5) h) ÷ (–7) i) ÷8 Circle 3 expressions: –6m ÷ (–6), m ÷ 6 × 6 and 6 + m + (–6) If m = –5, values from left to right are: 36 –36, –5, –5, –5 , –5, 17 3. Teacher to check student checks. b) x = 15 c) x = –5 d) x = –12 15 e) x=3 ii) –12 f) x = –3 iii) 3 g) x = 100 iv) –15 h) x = –8 i) x = –21 j) x = –35 –23, more than; –9, –8, –10 34, less than 39; 39, equal to 39; If a = 0, 3a = 0 = 5a 2. b) i) –26, closer to –29 than –23; c) 4. Teacher to check substitution checks. Answers may also be given in decimal form. n = –9 d) –2 AP Book PA8-18 page 110 1. x –3 t) 4. 23, more than 13; a) 29 s= 3 AP Book PA8-17 page 109 25, further from 13 than 23; b) 11 t= 2 1. closer to –8 than –9, next guess is –7 c) 8 y= 7 d) 21 x= 5 e) 9 3 a= 6 = 2 a) n (–3)n (–3)n – 5 –5 15 10 –4 12 7 –3 9 4 –2 6 1 e) –58, more than –100; –64, closer to –100 than –58; closer to –9 than –8, next guess is –10 AnswerKeysforAPBook8.2 COPYRIGHT©2011JUMPMATH:NOTTOBECOPIED AP Book PA8-16 page 107 Patterns and Algebra – AP Book 8, Part 2: Unit 4 (continued) 5. 6. ii) Teacher to check substitution checks. 1. a) 2. 5 6 5 × 2 = 10 10 k–1=t t 5 × 3 = 15 15 9–1=8 8 2. Circle: 1 and 3 7×s=t t 2–1=1 1 3. 1 : 4 × FN = # Blocks 15 – 1 = 14 14 x = –22 7×1=7 7 g) 32 s= 3 7 × 2 = 14 14 7 × 3 = 21 21 6×s=t t h) 11 t= 3 i) 46 y= 5 6 × 2 = 12 12 6 × 3 = 18 18 j) 2 1 z= 6 = 3 6 × 4 = 24 24 c) 6 ∆ = 4 or 1.5 circles a) No b) Yes; No; Method 1 c) On the left side of Line 2, the 3 should subtract from x, not add to it. e) f) (–2)x + 6 = –4 2. x–3=2 x=5 a) Incorrect b) Incorrect c) Correct d) Incorrect a) Line 2 should read: (–3)(x – 2) = –21 b) COPYRIGHT©2011JUMPMATH:NOTTOBECOPIED 5×1=5 f) (–2)(x – 3) ÷ (–2) = –4 ÷ (–2) 3. a) c) Correct d) Line 4 should read: 9×s=t 45 9 × 6 = 54 54 9 × 7 = 63 63 6×s=t t 4. ii) a) SB = 2 × FN b) B = 2 × FN + 2 iii) a) SB = 3 × FN b) B = 3 × FN + 2 iv) a) SB = 3 × FN a) s+9=t b) s+3=t c) s–1=t d) s–2=t b) 0; 1; 2 c) 20; 35; 40 d) 9; 5; 14 e) 26; 27; 28 f) 28; 42; 63 g) 27; 15; 50 h) 12; 16; 20 i) 12; 21; 36 multiplication only; a) Multiply each input number by 6. multiplication and addition. b) B = 3 × FN + 6 v) a) SB = 3 × FN b) B = 3 × FN + 1 vi) a) SB = 4 × FN b) B = 4 × FN + 3 c) the number of shaded blocks; 18 30 b) Divide each input number by 8. 7×s=t t c) 7 × 9 = 63 63 Subtract 3 from each input number. 7 × 2 = 14 14 d) x+3=y 7 × 15 = 105 105 e) x+5=y AP Book PA8-22 page 117 f) TN × 7 = T 1. 10 × s = t 2×s=t d) 15 × s = t 5. b) 3 × FN ‒ 1 c) 5 × FN Yes; Sample explanation: AP Book PA8-21 page 115 FN Sudha Nan 1 3+3+3=9 2+7=9 FN # Blocks 2 4 + 4 + 3 = 11 4 + 7 = 11 s+7=t t 1 3 3 5 + 5 + 3 = 13 6 + 7 = 13 1+7=8 8 2 6 2+7=9 9 2. 3 9 3 + 7 = 10 10 s+3=r r 2+3=5 5 1. b) c) FN # Blocks 1 4 3+3=6 6 2 8 4+3=7 7 3 12 x = –26C 5+1=6 6 y = +1C 6+1=7 7 7+1=8 8 a) (FN + 1) + (FN + 1) + 1 or 2 × FN + 3 Formula: 3 × FN Formula: 4 × FN d) rd 3 : 7 × FN = # Blocks 6 × 5 = 30 t AnswerKeysforAPBook8.2 6. rd st 6 × 3 = 18 s+1=t z = –23C 5. st 6 8×s=t c) 4. Formula: 2 × FN 6×1=6 c) b) f) t 9 × 5 = 45 b) Line 2 should read: (–3)(x – 2) = –21 (–3)x ÷ (–3) = –27 ÷ (–3) 5. 4 3 x = 36 (–2)(x – 3) = –4 4. 2 7 e) d) 3. 5 5+2=7 t = –7 10 ∆ = 3 circles 2 3+2=5 d) b) # Blocks t 5×s=t s = –11 AP Book PA8-19 page 111 FN 3 c) c) d) k 1+2=3 3; –36; –36 ÷ 4; h = –9 b) s+2=k 1 b) d) 1. e) AP Book PA8-20 page 112 b) (FN + 1) + (FN + 1) + (FN + 1) + 1 a) 2 b) three, 6; or 3 × FN + 4 3. four, 8; (n – 1), 2 × (n – 1) V‐25 Patterns and Algebra – AP Book 8, Part 2: Unit 4 (continued) 8, 8 + 2 × (n – 1) 4. When simplified, 8 + 2 × (n – 1) = 8 + 2n – 2 = 2n + 6 d) e) 66 blocks f) 22 term I would set the formula to 125 and then solve for TN. 5. a) i) ii) nd iii) 0, 3, 6, 9, 12 b) Gaps: –4 Start at 42, then subtract 4 each time. 4, 9, 14, 19, 24 a) b) c) 3. a) 6 3 8 FN #B Gaps: +3 1 3 Start at 3, then add 3 each time. 2 5 3 7 FN #B 1 5 2 9 3 13 6, 12, 18, 24, … 1. a) b) n×G T 1 2 2 3 3 4 4 5 c) 8 12 16 2 2 i) 2 × FN + 2 ii) 2 × FN + 1 iii) 4 × FN + 1 I×G O 1×3=3 12 2×3=6 15 3×3=9 18 Formula: 4n – 3 d) n×G 6 4 12 4 18 24 Formula: 6n + 3 e) n×G 8 16 24 3 32 3 Formula: 8n – 5 f) n×G 10 I×G O 1×2=2 6 2×2=4 8 3×2=6 10 20 30 2 40 2 Formula: 10n – 1 g) 2n – 1 h) 9n I×G O i) 8n – 1 4, 10, 16 4 3n + 6 Gap: +6 2 × 5 = 10 5 j) 9 k) 12n + 10 3 × 5 = 15 5 –8, –18, –28 14 l) 2n + 54 Subtract: 1 6. 5, 1; 5, 1 d) I×G 1 4 1×5=5 Gap: –10 1 n×G 2 Add: 4 c) 1 Formula: n + 1 2 2, 4; 2, 4 7, 15, 23 The gap equals the number in the formula that is multiplied by the Input. Substitute TN = 15 and solve. b) Gap: +8 c) b) 3, 9; 3, 9 11, 15 It’s the number multiplied by the Term Number (TN). c) a) Gap: +4 d) Substitute TN = 1 and solve. 3. In each case, the number in the circles will equal the gap. Use the rule to extend the sequence until you get to the th 15 term. b) b) 5. Add: 9 Gaps: +6 It’s the starting number. iii) Yes, they do. –2, 4, 10, 16, 22 It’s the number added or subtracted each time. ii) 3, 6, 9, 12, … AP Book PA8-24 page 119 Start at –2, then add 6 each time. 2. 2 Stepwise rule: The starting number is equal to the gap in the sequence. Gaps: +5 e) 4 Formula: There is no constant added or subtracted to the multiple of the Term Number. 42, 38, 34, 30, 26 Start at 4, then add 5 each time. #B 1 Start at 6, then add 6 each time. Start at 0, then add 3 each time. d) i) FN Gaps: +6 Gaps: +3 c) a) 2, 4, 6, 8, … Start at 2, then add 2 each time. Teacher to check that charts are also completed properly. b) Teacher to check if students can predict the gaps (prompt: how many new blocks are added each time?). Gaps: +2 AP Book PA8-23 page 118 1. 2. Sample explanation: (n + 1) + (n + 1) + 4; Yes, it gives same number of blocks: 2n + 6 Answers may vary but likely students will say the formula is easier. O 1 × 15 = 15 10 2 × 15 = 30 25 3 × 15 = 45 40 a) 6n + 2 b) 302 toothpicks c) Figure 13 15 15 Subtract: 5 15, 5; 15, 5 4. V‐26 “Input × Gap” AnswerKeysforAPBook8.2 COPYRIGHT©2011JUMPMATH:NOTTOBECOPIED c) Patterns and Algebra – AP Book 8, Part 2: Unit 4 (continued) AP Book PA8-25 page 122 1. a) 3 1 ( 5, 3 ) 5 3 ( 7, 5 ) 7 5 OP 1 ( 1, 2 ) 1 2 TN T ( 3, 4 ) 3 4 1 5 ( 5, 6 ) 5 6 2 7 3 9 4 11 5 13 6 15 nd 1 ( 2, 3 ) 2 3 ( 4, 4 ) 4 4 6 2 Note that T-tables will vary depending on the points selected. nd OP ( 6, 5 ) 5 Teacher to check the marked grid points. a) st 1 ( 0, 1 ) 0 1 ( 1, 3 ) 1 3 ( 2, 5 ) 2 5 or ( 3, 7 ) 3 7 b) OP 1 ( 0, 5 ) 0 5 ( 2, 6 ) 2 6 ( 4, 7 ) 4 7 OP 1 ( 0, 0 ) ( 1, 3 ) ( 2, 6 ) st st 0 2 nd OP c) 2 2 Line B 5. 3 2 6 ii) b) c) 1. c) a) TN T OP 1 5 ( 1, 5 ) T = 2 × TN + 3 2 8 ( 2, 8 ) 3 11 ( 3, 11 ) e) There is no Term Number “0” since the term numbers are based on the counting numbers. 4 14 ( 4, 14 ) a) b) ( 5, 17 ) T OP 1 4 ( 1, 4 ) 2 6 ( 2, 6 ) C (¢) 1 20 3 8 ( 3, 8 ) 2 40 4 10 ( 4, 10 ) 3 60 5 12 ( 5, 12 ) 4 80 TN T OP 1 4 ( 1, 4 ) C = 20L c) 200¢ = $2.00 d) 5 minutes st 17 L (min) b) 1 5 TN d) c) 8. a) 2 nd TN 10¢ OP 2 1 ( 2, 1 ) Line C 3 3 ( 3, 3 ) i) T OP 2 8 ( 2, 8 ) 12 ( 3, 12 ) 1 5 ( 1, 5 ) 3 2 8 ( 2, 8 ) 4 16 ( 4, 16 ) 3 11 ( 3, 11 ) 5 20 ( 5, 20 ) 4 14 ( 4, 14 ) 2. b) ii) I O I O 4 5 ( 4, 5 ) TN T OP 1 2 1 3 1 1 5 7 ( 5, 7 ) 1 1 ( 1, 1 ) 5 ( 2, 5 ) 2 5 2 4 3 3 2 3 8 3 5 5 5 3 9 ( 3, 9 ) 4 11 4 6 7 7 4 13 ( 4, 13 ) b) A: O = 3I – 1 b) ( 1, 3 ), ( 2, 5 ), ( 3, 7 ), ( 4, 9 ), ( 5, 11 ) O a) ( 40, 157 ) x=6 I 4. ( 40, 122 ) ii) d) BONUS 6. i) AP Book PA8-26 page 125 nd 0 1 a) c) nd a) Line A COPYRIGHT©2011JUMPMATH:NOTTOBECOPIED st 2 7. Students should not use the point ( 0, 3 ). ( 3, 1 ) st 2 nd 1 c) 3. st Teacher to check the marked points. OP b) 2. b) c) ( 1, 41 ), ( 2, 38 ), ( 3, 35 ), ( 4, 32 ), ( 5, 29 ) d) (1, 10), (2, 20), (3, 40), (4, 80), (5, 160) 3. a) A: 0, 6, 12, 18, 24 B: 64, 32, 16, 8, 4 i) C: 64, 32, 16, 32, 64 B: O = I + 2 D: 4, 9, 4, 9, 4, 9, 4, 9 C: O = I E: 55, 46, 37, 28, 19 Teacher to check. F: 3, 6, 11, 18, 27 b) AnswerKeysforAPBook8.2 i) C ii) A iii) D iv) B v) F V‐27 Patterns and Algebra – AP Book 8, Part 2: Unit 4 (continued) vi) c) E d) A: iii) Teacher to check. vi) No Sample descriptions: 2. ii), iii) and v) Increasing sequences go up to the right; decreasing sequences go down to the right. ( 5, 12 ), ( 6, 15 ) 3. a) If the gaps in a sequence are equal (ie. they increase or decrease by the same amount each time), the line is straight. B: ( 1, 0 ), ( 2, 3 ), ( 3, 6 ), ( 4, 9 ), ( 1, 3 ), ( 2, 2 ), ( 3, 1 ), ( 4, 0 ), ( 5, –1 ) Yes, it is linear. iv) ( 1, 1 ), ( 2, 5 ), b) ( 3, 9 ), ( 4, 12 ), ( 1, 1 ), ( 2, –2 ), ( 3, 3 ), ( 4, –4 ), ( 5, 5 ), ( 6, –6 ) ( 5, 14 ), ( 6, 15 ) A repeating sequence makes a zig-zag pattern. C: AP Book PA8-27 page 126 1. a) i) No, it isn’t linear. ( 1, 0 ), ( 2, 1 ), c) ( 3, 3 ), ( 4, 6 ), ( 5, 10 ), ( 6, 15 ) v) ( 1, –8 ), ( 2, –5 ), ( 3, –2 ), ( 4, 1 ), ( 5, 4 ) ( 1, 4 ), ( 2, 2 ), ( 3, 0 ), ( 4, –2 ), ( 5, –4 ), ( 6, –6 ) D: Yes, it is linear. INVESTIGATION 1 ii) E: A. ( 1, 1 ), ( 2, 3 ), ii) 1, 3, 5, 7, 9, 11 Gaps: +2 ( 3, 5 ), ( 4, 7 ), ( 5, 9 ), ( 6, 11 ) vi) iii) ( 1, 14 ), ( 2, 10 ), 0, 3, 6, 9, 12, 15 Gaps: +3 ( 3, 8 ), ( 4, 4 ), v) ( 5, 3 ), ( 6, 0 ) 4, 2, 0, –2, –4, –6 Gaps: –2 B. i) 0, 1, 3, 6, 10, 15 Gaps: +1, +2, +3, +4, +5 iv) 1, 5, 9, 12, 14, 15 Gaps: +4, +4, +3, +2, +1 vi) b) V‐28 i) Gaps: –4, –2, –4, –1, –3 No ii) Yes iii) Yes iv) No v) Yes 14, 10, 8, 4, 3, 0 C. If all the gaps are equal, the sequence is linear. AnswerKeysforAPBook8.2 COPYRIGHT©2011JUMPMATH:NOTTOBECOPIED F: Patterns and Algebra – AP Book 8, Part 2: Unit 4 (continued) 4. a) b) b) B is linear because the gaps are all equal to –3. A: c) B: 2. INVESTIGATION 2 A. i) 3, 5, 7, 9 Gaps: +2 ii) a) 3n – 2 1 1 n 2n (n, 2n) n 4n – 2 (n, 4n – 2) 2 4 1 2 ( 1, 2 ) 1 2 ( 1, 2 ) 3 7 2 4 ( 2, 4 ) 2 6 ( 2, 6 ) 4 10 3 6 ( 3, 6 ) 3 10 ( 3, 10 ) 5 13 4 8 ( 4, 8 ) 4 14 ( 4, 14 ) n 2n – 1 5 10 ( 5, 10 ) 5 18 ( 5, 18 ) 1 1 2 3 3 5 4 7 5 9 n 4n – 3 (n, 4n – 3) 1 1 ( 1, 1 ) 2 5 ( 2, 5 ) 3 9 ( 3, 9 ) 4 13 ( 4, 13 ) 5 17 ( 5, 17 ) n 5n – 1 (n, 5n – 1) 1 4 ( 1, 4 ) 2 9 ( 2, 9 ) 3 14 ( 3, 14 ) 4 19 ( 4, 19 ) 5 24 ( 5, 24 ) i) n 2n + 3 (n, 2n + 3) 1 5 ( 1, 5 ) 2 7 ( 2, 7 ) 3 9 ( 3, 9 ) 4 11 ( 4, 11 ) 5 13 ( 5, 13 ) b) 6, 7, 8, 9 c) Gaps: +1 iii) 1, 4, 9, 16 1, 4, 7, 10 Gaps: +3 v) 0.25, 0.5, 0.75, 1 Gaps: +0.25 vi) Gaps: +2, +4, +6 B. C. COPYRIGHT©2011JUMPMATH:NOTTOBECOPIED D. ii) 0, 2, 6, 12 i), ii), iv) and v) Choices will vary – teacher to check. The two non-linear sequences both multiply the Term Number with itself, rather than just with a constant. In each case, n has the same coefficient (ie. the number in front of it: 2) and only the “added number” changes (3, –2, 0). Teacher to check combined graph. c) No, the lines will never intersect: they are parallel. In the formula, this is shown by the common n coefficient. Gaps: +3, +5, +7 iv) b) iii) n 3. n 2n – 2 (n, 2n – 2) 1 0 ( 1, 0 ) 2 2 ( 2, 2 ) 3 4 ( 3, 4 ) 4 6 ( 4, 6 ) 5 8 ( 5, 8 ) a) n 3n + 2 (n, 3n + 2) 1 5 ( 1, 5 ) 2 8 ( 2, 8 ) 3 11 ( 3, 11 ) 4 14 ( 4, 14 ) 5 17 ( 5, 17 ) d) AP Book PA8-28 page 128 1. a) n 2n + 3 1 5 2 7 3 9 4 11 5 13 AnswerKeysforAPBook8.2 V‐29 Patterns and Algebra – AP Book 8, Part 2: Unit 4 (continued) e) n 10n (n, 10n) 1 10 ( 1, 10 ) 2 20 ( 2, 20 ) 3 30 ( 3, 30 ) 4 40 ( 4, 40 ) 5 50 ( 5, 50 ) c) ( 1, 60 ), ( 2, 120 ), ( 3, 180 ) Gaps: +1, +6, +2 d) 60(4.5) = 270 km b) The term values e) c) Vertical Teacher to check extended line (as shown above). th th 7 term = 19 iii) 8 term = 25 3n + 1 n Term 1 2 2 9 b) +4 3 16 c) +2 4 23 d) –1 e) +5 3(8) + 1 = 25 5. The gap equals the coefficient of n. 6. AP Book PA8-29 page 129 th 7 term = 44 The following values are missing: a) b) 7 Input: Output: 5 b) 2. 3. ii) Term Number: 4, 7 iii) Teacher to check lines. a) 18 b) 55 a) i) Term 1 2 2 6 3 10 4 14 7. +4 ii) +2 3n – 2 iii) +3 8. 7n – 5 a) 4. a) Yes: 12 term ii) Yes: 16 term iii) No, since 7 is not a factor of 51. th n # TP 1 5 2 9 3 13 f) a) i) 6 ii) 4 AP Book PA8-30 page 132 iii) 1 1. b) A: ( 1, 1 ), iii) B: ( 1, 4 ), ii) Formula: 3n – 2 17 times 2. i) C: ( 1, 6 ), i) 9. B, C, A 10. Answers will vary – teacher to check. 11. a) 60h b) h D (km) 1 60 2 120 3 180 ii) V‐30 4, 6, 8 b) 2n + 2 c) Figure 49 a) 4, 9, 14 b) 5n – 1 c) No such figure. No multiple of 5 equals 101. iii) th n a) Sample: 7 term = 26 ii) 60h = 360 h=6 iii), i), ii) th i) 6 hours b) 7(7) – 5 = 44 c) n i) 4(7) – 2 = 26 4n – 2 3(7) – 2 = 19 6, 18 Term Value: i) 3, 4, 10, 12 a) 9, 12, 15 b) 3n + 6 c) No such figure. Term Sample: No multiple of 3 equals 94. th 1 1 8 term = 33 2 4 4n + 1 3 7 4(8) + 1 = 33 4 10 b) n # TP 1 4 2 7 3 10 iv) 3. a) a) 4, 8, 12 b) 4n c) Figure 25 “The cost (in $) of renting a pair of skates for n hours” AnswerKeysforAPBook8.2 COPYRIGHT©2011JUMPMATH:NOTTOBECOPIED 1. a) Patterns and Algebra – AP Book 8, Part 2: Unit 4 (continued) Sample explanation: Formula for graph is 4n + 2, which fits the skate scenario ($2 flat fee + $4/hr) whereas, for volume of a cube, outputs 3 would be 1 = 1, 3 3 2 = 8, 3 = 27, etc. b) 4. Answers will vary – teacher to check. a) a×b=b×a 6. b) 3 × (–5 + 3) 3 × (–5) + 3 × 3 = 3 × (–2) = –15 + 9 = –6 = –6 2 = 3 × (–1) = –15 + 12 2 2 = –3 = –3 2 2 2 2 3 4 – 3 = 16 – 9 = 7 4 5 – 4 = 25 – 16 = 9 5 6 – 5 = 36 – 25 = 11 7 – 6 = 49 – 36 = 13 2 (n + 1) – n 2 3 × (–5 + 5) 3 × (–5) + 3 × 5 =3×0 = –15 + 15 =0 =0 3 × (–5) + 3 × (–6) Sample explanation: = –15 + (–18) = –33 = –33 b) Figure 33 7. 8. 9. 10. d) x=4 e) 3x + 2x – 4x = 13 b) 4x – 2x = 8 + 2 c) –3x – 2x = –14 + 4 Teacher to check underlining. d) 5x – 2x = 9 + 3 a) b) 2x = 8 there are 16 red and 4 yellow beads x = 13 4. 8. green: x yellow: x + 3 x=4 c) b) 3x = 9 red: x + 4 green: 5x x=3 yellow: x x=2 b) 4, 4 f) x=1 c) (–7) × 0 + (–7) × 3 g) x=7 red: x + 5 d) 0×3+0×4 red: x green: x; yellow: 3x yellow: x ‒ 3 x + 5 + x = 3x x=5 a) 5. red: 4x e) 6. b) 8, 8 f) 9–m+m=9 a) Tara is correct for all values of a except a = 0. AnswerKeysforAPBook8.2 x so x + 4 = 20 5, 1 The two answers are equal, so we know that: 1 3 ÷ 12 = 4 = 0.25 x yellow: x ÷ 4 or 4 x + 3x = –16 4x = –16 3. red: x a) m–5+5=m f) e) x=4 x = –4 e) 3 × 12 = 36 there are 11 red and 9 yellow beads 8x – 3x = 20 d) –1, –1 c) d) e) a) 5, 3 b) 8, 5, –3; c) d) 7, –2, 9; 7. b) yellow: x + 3 9. 30 beads per box Sample approach: 10. 3 hours Sample approach: 7 + 3n = 10 + 2n n=3 red: x red: x red: x 7 × 9 + (–2) × 9 yellow: x + 6 –3, 2, 0; so x + x + 6 = 20 (–3) × 0 + 2 × 0 green: x yellow: 4x x yellow: x ÷ 4 or 4 –3, –3 red: x – 2 red: x yellow: x + 2 f) c) red: x yellow: x ‒ 5 (a + b) × c = a × c + b × c 11. so x + x ‒ 2 = 20 x = 11 –4, 12, 83 –70, –70 e) yellow: x ‒ 2 c) b) 12 ÷ 3 = 4 5x – 2x = 9 red: x x = –3 c) d) b) d) c) m÷2×2=m 12 × 3 = 36 + 2x 3, 2, –5 b) 7+m–m=7 c) f) x=2 5, –2, 7 d) 15 + 3x b) a) c) b) e) there are 5 red and 15 yellow beads x=3 3, –5, 5; m+3–3=m Answers will vary – teacher to check. – 4x 3, –5, –6 b) b) d) x = –4 = 3 × (–11) 2n + 10 + 4x d) 3 × (–5 – 6) a) c) 5x = 20 2009 row 4 019 so x + 3x = 20 x=5 – 3x c) red: x yellow: 3x 3x = 9 e) th c) b) c) AP Book PA8-31 page 133 COPYRIGHT©2011JUMPMATH:NOTTOBECOPIED 2. 2 Teacher to check student checks. 3. Yes, though answers will vary – teacher to check. 3 × (–5) + 3 × 4 st 2. c) 3 × (–5 + 4) Using the 1 formula above, n + 1 = 2010 and n = 2009. 1. 1. 5. or 2n + 1 5. Yes: –15 2 3 –2 =9–4=5 d) b) 2 2 c) Yes: –28 2 2 –1 =4–1=3 b) a) AP Book PA8-32 page 135 Circle: c), e) 2 1 6 4. 11. 32 units Sample approach: 3x + 10 = 5x + 4 + x 3x + 10 = 6x + 4 –3x = –6 x=2 x=7 there are 7 red and 13 yellow beads V‐31
© Copyright 2025 Paperzz