www.sciencemag.org/content//342/6164/1375/suppl/DC1 Supplementary Materials for Progressive Specification Rather than Intercalation of Segments During Limb Regeneration Kathleen Roensch, Akira Tazaki, Osvaldo Chara, Elly M. Tanaka* *Corresponding author. E-mail: [email protected] Published 13 December 2013, Science 342, 1375 (2013) DOI: 10.1126/science.1241796 This PDF file includes: Materials and Methods Figs. S1 to S7 References Materials and Methods: Axolotl surgery. Ambystoma mexicanum were bred in our facility and were maintained at 17-20°C in Dresden tap water and fed daily with artemia or fish pellets. For all surgeries, animals were anesthetized in 0.01% ethyl-paminobenzoate (Sigma). The experiments described here were performed on 4.0-cm-long (from snout to tip of the tail) white animals. Cloning of Axolotl HoxA9, A11and A13. To obtain full length sequence of axolotl HoxA9, 5’ RACE was performed using limb bud total RNA with a primer 5’- GGCTGCTGTCGAAGGTGGTGCAGTCCCC -3’ by using Gene Racer kit (Invitrogen) according to the manufacture’s instruction. The full coding region of HoxA9 was PCR amplified from limb bud cDNA with primers 5’TTCGAATTCATATTTTTTCCTGGAGGTCCCGCT -3’ and 5’AGGCTCGAGTCACTCGTCCTTAGGCCGGTCC -3’ designed according to the sequence obtained from the 5’RACE and according to the axolotl HoxA9 sequence from Genbank (U20941.1), respectively. The PCR product was cloned into the EcoRI and XhoI site in the pCS2 vector. For cloning full-length axolotl HoxA11, 5’ RACE was performed using limb bud total RNA with a primer 5’- CCTGCCACCCACAGCTCTCCTCCGGGCC -3’ by using Gene Racer kit (Invitrogen) according to the manufacture’s instruction. A long insert cDNA library was screened with primers designed according to the sequence obtained from the 5’RACE, 5’TCCTCTTCCGGCAACAACGAGGAGAA -3’ and 5’AACACATATGTGCATTTGCCATCGAC -3’. Full-length axolotl HoxA13 was cloned by screening the cDNA library (NT library, (37)) with degenerate primers, 5’- MGIMGIGGIMGIAARAARMGIGT -3’ and 5’CATICKICKRTTYTGRAACCA -3’. Accession numbers of the axolotl HoxA9, A11 and A13 are JX975067, JX975068, JX975069, respectively. HOXA antibody preparation. HOXA9 and A13 antibodies were prepared as described previously(38). For HOXA11 antibody production, a GST-HOXA11 fusion protein with amino acids TAYGGPESGPADYAGDKGCEKGSPAVAGPPSAEACRGEADRRGAESSGGGGSSSSPESS SGNNEEKASGSAPNG was used to immunize rabbits. Antibody was affinity purified using an MBP fusion protein to the same sequence as previously described (38). Immunohistochemistry Limb buds and limb blastemas were collected from the level of the shoulder, fixed 4 h at 4°C in 1x MEMFA (0.1M MOPS pH7.4, 2mM EGTA, 1mM MgSO4 and 3.7% formaldehyde) (Merck)). The samples were washed in 1xPBS followed by 20% sucrose overnight at 4°C. The tissue was embedded in tissue-tek (O.C.T. Compound, Sakura) and cut at 10 µm thickness (Microm HM 560). The immunostaining was done by blocking (1xPBS, 1% goat serum, 0.3% Tween) the slides for 30 min at RT. The primary rabbit anti-HOXA9 (1:5000), rabbit anti-HOXA11, rabbit anti-HOXA13 (1:1000) were added to the slides and incubated overnight at 4°C. The antibodies were detected using the secondary antibody Cy5 anti-rabbit IgG (1:200, Invitrogen). The cell nuclei were stained with HOECHST 33342 (1:500, Sigma). The slides were mounted with 50% glycerol. The regenerated limb blastemas as well as limb buds were imaged using Zeiss Axiovert 200 microscope. In-situ hybridization on limb paraffin sections. The limb blastemas and limb buds were fixed in 1x MEMFA (0.1M MOPS pH 7.4, 2mM EGTA, 1mM Mg SO4 x 7H2O and 3.7% formaldehyde) overnight at 4°C, washed in 1xPBS, dehydrate by increasing ethanol series, washed 3x in Xylene, 3x in paraffin at 65°C and finally embedded into paraffin. Paraffin-embedded tissues were sectioned at 10μm followed by drying at 37°C incubator overnight. Before in-situ hybridization, the paraffin sections were dewaxed with 3x Xylene, decreasing ethanol series and washed in 1xPBS/0.1% Tween (pre-treated with DEPC). To synthesize the anti-sense RNA-probe for HoxA9, the plasmids were linearized with EcoRI. The transcription was performed using T7 polymerase (Roche) for HoxA9, HoxA11 and HoxA13. In situ hybridization was performed as described (39). Briefly, the sections were hybridized with 100ng/ml DIG-labeled probe in hybridization buffer (50% formamide, 10% dextran, 5x SSC, 0.1% Tween, 1mg/ml yeast RNA, 100μg/ml heparin, 1x Denhardt’s, 0.1% CHAPS, 5mM EDTA) overnight at 70°C. Slides were washed 3x for 1 hour each and overnight at 70°C in 5x SSC post-hybridization buffer (50% formamide, 5x SSC, 0.1% Tween) followed by 2x SSC (50% formamide, 2x SSC, 0.1% Tween) twice for 1 hour each. Further the slides were washed twice for 5 min each and once 20 min at RT in maleic acid buffer (100mM Maleic acid pH 7.5, 150mM NaCl, 0.1% Tween), blocked in maleic acid buffer and 1% blocking reagent (Roche) for 1 hour at RT. Anti-DIG Fab fragments conjugated with alkaline phosphatase (Roche) were diluted 1:5000 in maleic acid buffer/1% blocking reagent and applied to the sections for 2 hours at RT. Slides were washed 5x for 10 min each in maleic acid buffer and 2x for 10 min each in alkaline phosphatase buffer (100mM Tris pH 9.5, 50mM MgCl2, 100mM NaCl, 0.1% Tween). The slides were overlaid with BM purple (Roche) for 12-36 hours at 37°C and the reaction were stopped with cold 1xPBS/1mM EDTA. The in-situ hybridized limbs were aquired on Zeiss Axiovert microscope using the Axiovision software. Retinoic Acid administration To determine if retinoic acid (RA)-induced proximalization repressed onset of HOXA13 expression in the hand blastema, RA was dissolved in DMSO (100 µM) and injected intraperitoneally at 100 µg/g body weight one day prior to limb amputation through the metacarpals. Parallel control animals were injected with an equivalent volume of DMSO. Immunostaining and imaging was performed as above, with all samples in parallel including a 10D upper arm blastema as a reference for positive signal. Transplantation of GFP+ connective tissue blastema cells at different stages Animals expressing GFP in connective tissue were generated by embryonic transplantations of lateral plate mesoderm (12, 40). The transplanted embryos were bred in our facility up to a size of 4.0 cm (from snouth to tip of the tail) and used as donors. The size of the host was about 4.0cm-long (from snouth to tip of the tail). 4 day or 8 day (proximal, distal or hand) blastemas were transplanted into a 6 day mid-upper arm blastema of a white host. Briefly, limbs were amputated in the middle of the upper arm. For donors, the upper arm blastema was removed into PBS with Ca++Mg++ to prevent dissociation of the cells. The epidermis was peeled away. For 8 day blastema transplants, the blastema was then split into a distal and a proximal piece. Up to two pieces of blastema containing GFP+ cells were taken from each P or D piece for transplantation. The host 6 day blastema was prepared by poking a hole in the epidermis with forceps at the midpoint of the blastema. Forceps were used to place the donor piece through the hole into the middle of the blastema. The transplanted animals were kept in a covered dish for 3-4 h with bencocaine soaked tissues. Afterwards they were transferred into tap water. The hosts were kept for 30 days of regeneration followed by microscopy of the transplanted GFP+ connective tissue cells using an Olympus SZX12 fluorescence stereomicroscope. Calculating the spatial distribution of GFP+ cells between the forearm and the hand We calculated the distribution of GFP+ cells along the proximo-distal axis of the regenerating axolotl limbs using PIX, an open software developed in FORTRAN language. Images were analyzed as follows: First, the proximo-distal axis was visually identified based on brightfield images. Second, the fluorescence intensity from GFP+ cells was determined for each pixel after background subtraction. At each coordinate along the proximo-distal axis, the summed fluorescence intensity from all the pixels belonging to this coordinate (that is, all the pixels located in the perpendicular direction at this coordinate of the proximo-distal axis) was determined, resulting in a single line profile along the proximo-distal axis for each limb. In order to compile all the individual limb data from one condition into one line profile, the individual line profiles were normalized—the fluorescence intensity at each PD coordinate was normalized by the total fluorescence intensity (the integral of the accumulated fluorescence intensity calculated over the proximo-distal axis). The pixel positions along the PD axis were normalized according to limb length. The average (see Figure 3j) and standard deviation (see Supplementary Figure S5) of this line distribution was calculated for the four experimental conditions studied: 8 day hand blastema transplants (8D Hand BL), the distal portion of the 8 day upper arm blastema (8D UA BL--dist), the proximal portion of the 8 day upper limb blastema (8D UA BL--prox) and the early blastema transplants (4D UA BL). References and Notes 1. V. French, P. J. Bryant, S. V. Bryant, Pattern regulation in epimorphic fields. Science 193, 969–981 (1976). Medline doi:10.1126/science.948762 2. M. Maden, The regeneration of positional information in the amphibian limb. J. Theor. Biol. 69, 735–753 (1977). Medline doi:10.1016/0022-5193(77)90379-4 3. S. V. Bryant, V. French, P. J. Bryant, Distal regeneration and symmetry. Science 212, 993– 1002 (1981). Medline doi:10.1126/science.212.4498.993 4. J. E. Mittenthal, The rule of normal neighbors: A hypothesis for morphogenetic pattern regulation. Dev. Biol. 88, 15–26 (1981). Medline doi:10.1016/0012-1606(81)90215-3 5. H. Meinhardt, A bootstrap model for the proximodistal pattern formation in vertebrate limbs. J. Embryol. Exp. Morphol. 76, 139–146 (1983). Medline 6. H. Meinhardt, A boundary model for pattern formation in vertebrate limbs. J. Embryol. Exp. Morphol. 76, 115–137 (1983). Medline 7. H. Bohn, Interkalare Regeneration und segmentale Gradienten bei den Extremitäten von Leucophaea-Larven (Blattaria). Roux's Arch. 165, 303–341 (1970). doi:10.1007/BF00573677 8. D. L. Stocum, Regulation after proximal or distal transposition of limb regeneration blastemas and determination of the proximal boundary of the regenerate. Dev. Biol. 45, 112–136 (1975). Medline doi:10.1016/0012-1606(75)90246-8 9. L. E. Iten, S. V. Bryant, The interaction between the blastema and stump in the establishment of the anterior—posterior and proximal—distal organization of the limb regenerate. Dev. Biol. 44, 119–147 (1975). Medline doi:10.1016/0012-1606(75)90381-4 10. M. J. Pescitelli Jr., D. L. Stocum, The origin of skeletal structures during intercalary regeneration of larval Ambystoma limbs. Dev. Biol. 79, 255–275 (1980). Medline doi:10.1016/0012-1606(80)90115-3 11. E. G. Butler, H. F. Blum, Regenerative growth in the urodele forelimb following ultraviolet radiation. J. Natl. Cancer Inst. 15, 877–889 (1955). Medline 12. M. Kragl, D. Knapp, E. Nacu, S. Khattak, M. Maden, H. H. Epperlein, E. M. Tanaka, Cells keep a memory of their tissue origin during axolotl limb regeneration. Nature 460, 60–65 (2009). Medline doi:10.1038/nature08152 13. E. Nacu, M. Glausch, H. Q. Le, F. F. Damanik, M. Schuez, D. Knapp, S. Khattak, T. Richter, E. M. Tanaka, Connective tissue cells, but not muscle cells, are involved in establishing the proximo-distal outcome of limb regeneration in the axolotl. Development 140, 513– 518 (2013). Medline doi:10.1242/dev.081752 14. J. Faber, An experimental analysis of regional organization in the regenerating fore limb of the axolotl (Ambystoma mexicanum). Arch. Biol. (Liege) 71, 1–72 (1960). Medline 15. K. Echeverri, E. M. Tanaka, Proximodistal patterning during limb regeneration. Dev. Biol. 279, 391–401 (2005). Medline doi:10.1016/j.ydbio.2004.12.029 16. A. P. Davis, D. P. Witte, H. M. Hsieh-Li, S. S. Potter, M. R. Capecchi, Absence of radius and ulna in mice lacking hoxa-11 and hoxd-11. Nature 375, 791–795 (1995). Medline doi:10.1038/375791a0 17. Y. Yokouchi, S. Nakazato, M. Yamamoto, Y. Goto, T. Kameda, H. Iba, A. Kuroiwa, Misexpression of Hoxa-13 induces cartilage homeotic transformation and changes cell adhesiveness in chick limb buds. Genes Dev. 9, 2509–2522 (1995). Medline doi:10.1101/gad.9.20.2509 18. C. Fromental-Ramain, X. Warot, S. Lakkaraju, B. Favier, H. Haack, C. Birling, A. Dierich, P. Doll e, P. Chambon, Specific and redundant functions of the paralogous Hoxa-9 and Hoxd-9 genes in forelimb and axial skeleton patterning. Development 122, 461–472 (1996). Medline 19. C. Fromental-Ramain, X. Warot, N. Messadecq, M. LeMeur, P. Dollé, P. Chambon, Hoxa-13 and Hoxd-13 play a crucial role in the patterning of the limb autopod. Development 122, 2997–3011 (1996). Medline 20. J. Zakany, D. Duboule, The role of Hox genes during vertebrate limb development. Curr. Opin. Genet. Dev. 17, 359–366 (2007). Medline doi:10.1016/j.gde.2007.05.011 21. Y. Yokouchi, H. Sasaki, A. Kuroiwa, Homeobox gene expression correlated with the bifurcation process of limb cartilage development. Nature 353, 443–445 (1991). Medline doi:10.1038/353443a0 22. H. Haack, P. Gruss, The establishment of murine Hox-1 expression domains during patterning of the limb. Dev. Biol. 157, 410–422 (1993). Medline doi:10.1006/dbio.1993.1145 23. C. E. Nelson, B. A. Morgan, A. C. Burke, E. Laufer, E. DiMambro, L. C. Murtaugh, E. Gonzales, L. Tessarollo, L. F. Parada, C. Tabin, Analysis of Hox gene expression in the chick limb bud. Development 122, 1449–1466 (1996). Medline 24. M. Towers, L. Wolpert, C. Tickle, Gradients of signalling in the developing limb. Curr. Opin. Cell Biol. 24, 181–187 (2012). Medline doi:10.1016/j.ceb.2011.11.005 25. A. Roselló-Díez, M. Torres, Regulative patterning in limb bud transplants is induced by distalizing activity of apical ectodermal ridge signals on host limb cells. Dev. Dyn. 240, 1203–1211 (2011). Medline doi:10.1002/dvdy.22635 26. C. Tabin, L. Wolpert, Rethinking the proximodistal axis of the vertebrate limb in the molecular era. Genes Dev. 21, 1433–1442 (2007). Medline doi:10.1101/gad.1547407 27. F. V. Mariani, C. P. Ahn, G. R. Martin, Genetic evidence that FGFs have an instructive role in limb proximal-distal patterning. Nature 453, 401–405 (2008). Medline doi:10.1038/nature06876 28. D. M. Gardiner, B. Blumberg, Y. Komine, S. V. Bryant, Regulation of HoxA expression in developing and regenerating axolotl limbs. Development 121, 1731–1741 (1995). Medline 29. H. J. Lawrence, G. Sauvageau, R. K. Humphries, C. Largman, The role of HOX homeobox genes in normal and leukemic hematopoiesis. Stem Cells 14, 281–291 (1996). Medline doi:10.1002/stem.140281 30. S. Saxena, I. A. Niazi, Effect of vitamin A excess on hind limb regeneration in tadpoles of the toad, Bufo andersonii (Boulenger). Indian J. Exp. Biol. 15, 435–439 (1977). Medline 31. M. Maden, Vitamin A and pattern formation in the regenerating limb. Nature 295, 672–675 (1982). Medline doi:10.1038/295672a0 32. N. Mercader, E. M. Tanaka, M. Torres, Proximodistal identity during vertebrate limb regeneration is regulated by Meis homeodomain proteins. Development 132, 4131–4142 (2005). Medline doi:10.1242/dev.01976 33. K. Crawford, D. L. Stocum, Retinoic acid proximalizes level-specific properties responsible for intercalary regeneration in axolotl limbs. Development 104, 703–712 (1988). Medline 34. N. Wada, H. Tanaka, H. Ide, T. Nohno, Ephrin-A2 regulates position-specific cell affinity and is involved in cartilage morphogenesis in the chick limb bud. Dev. Biol. 264, 550– 563 (2003). Medline doi:10.1016/j.ydbio.2003.08.019 35. S. M. da Silva, P. B. Gates, J. P. Brockes, The newt ortholog of CD59 is implicated in proximodistal identity during amphibian limb regeneration. Dev. Cell 3, 547–555 (2002). Medline doi:10.1016/S1534-5807(02)00288-5 36. M. Barna, L. Niswander, Visualization of cartilage formation: Insight into cellular properties of skeletal progenitors and chondrodysplasia syndromes. Dev. Cell 12, 931–941 (2007). Medline doi:10.1016/j.devcel.2007.04.016 37. B. Habermann, A.-G. Bebin, S. Herklotz, M. Volkmer, K. Eckelt, K. Pehlke, H. H. Epperlein, H. K. Schackert, G. Wiebe, E. M. Tanaka, An Ambystoma mexicanum EST sequencing project: Analysis of 17,352 expressed sequence tags from embryonic and regenerating blastema cDNA libraries. Genome Biol. 5, R67 (2004). Medline doi:10.1186/gb-2004-5-9-r67 38. L. Mchedlishvili, V. Mazurov, K. S. Grassme, K. Goehler, B. Robl, A. Tazaki, K. Roensch, A. Duemmler, E. M. Tanaka, Reconstitution of the central and peripheral nervous system during salamander tail regeneration. Proc. Natl. Acad. Sci. U.S.A. 109, E2258–E2266 (2012). Medline doi:10.1073/pnas.1116738109 39. M. Kragl, K. Roensch, I. Nüsslein, A. Tazaki, Y. Taniguchi, H. Tarui, T. Hayashi, K. Agata, E. M. Tanaka, Muscle and connective tissue progenitor populations show distinct Twist1 and Twist3 expression profiles during axolotl limb regeneration. Dev. Biol. 373, 196–204 (2013). Medline doi:10.1016/j.ydbio.2012.10.019 40. E. Nacu, D. Knapp, E. M. Tanaka, H. H. Epperlein, Axolotl (Ambystoma mexicanum) embryonic transplantation methods. Cold Spring Harb Protoc 2009, pdb.prot5265 (2009). Medline doi:10.1101/pdb.prot5265 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 Supplementary Figure Legends Figure S1. Multiple alignments for Vertebrate HOXA9, A11, A13. Accession numbers used for multiple aliments are Hs_HOXA9 (NP_689952.1), Mm_HOXA9 (NP_034586.1), Gg_HOXA9 (XP_003640782.1), Xl_HOXA9 (NP_001091264.1), Dr_HOXA9 (NP_571608.1), Hs_HOXA11 (NP_005514.1), Mm_HOXA11 (NP_034580.1) Gg_HOXA11 (NP_989950.1), Xt_HOXA11 (XP_002933440.1), Dr_HOXA11 (NP_571222.1), Hs_HOXA13 (NP_000513.2, Mm_HOXA13 (NP_032290.1), Gg_HOXA13 (XP_003640757.1), Xt_HOXA13 (XP_002933431.1), Dr_HOXA13 (NP_001078963.1). Figure S2. Nested HoxA9, HoxA11 and HoxA13 mRNA expression in the limb bud. Serial sections of the developing forelimb bud at stage 36, 39, 40. Interestingly, HOXA11 transcript expression extends to the distal tip, suggesting post-transcriptional control of HOXA11 protein expression. A-C, HoxA9 expression. D-F, HoxA11 expression. G-I, Expression of HoxA13. A,D,G, Early limb bud stage 36. B,E,H, Mid bud stage 39. C,F,I, Late limb bud stage 40. Scale bar, 100µm. Figure S3. HOXA9 and HOXA11 expression are absent in the one day limb blastema. Consecutive longitudinal limb sections to those shown in Figure 2A. A, GFP-expressing blastema cell precursors (green) do not express HOXA9 (red). Images taken at same exposure to those taken for 12 day blastema in Figure 2D. B, Zoom of inset shown in A. C, GFP-expressing blastema cell precursors (green) do not express HOXA11 (red). Images taken at same exposure to those taken for 12 day blastema in Figure 2F. D, Zoom of inset shown in C. Scale bar, 500 µm. Figure S4. The first time point of detectable HOXA13 expression was day 8 postamputation. Longitudinal section of 4 day and medium bud (8 day) forelimb blastemas amputated at the level of the humerus. A, GFP+ blastema precursors (green) at 4 dpa do not express HOXA13 (red). Images taken at same exposure as 12 day blastema samples in Figure 2H. B, Zoom of inset in A. Yellow arrowheads show that sparse signal in red, channel (D) is not associated with GFP+ signal (E), and many spots are not associated with a Hoechst-positive nucleus (blue, C). F, Medium bud (8 day) upper arm blastema shows robust HOXA13 expression (red) at distal tip (corresponding to transplanted cells in Figure 3 C,D). G, Zoom of inset in F. H. Single channel HOXA13 signal. I. Single channel Hoechst channel. Distal, left; proximal, right. Scale bar, 200µm. Figure S5. Nested HoxA9, HoxA11 and HoxA13 mRNA expression during limb regeneration visualized by section in-situ hybridization. Longitudinal sections of an early bud (5 day), medium bud (8 day) and medium to late bud (10 day) regenerating forelimb blastemas amputated at the level of the humerus. HoxA13 expression is absent from the 5 day limb blastema. By 8 days, the characteristic nested expression pattern of HoxA9-A13 is observed. A-C, Expression pattern of HoxA9 in the mesenchyme cells. 2 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 D-F, Expression pattern of HoxA11 visualized in the mesenchyme. In the 8 day limb blastema, the pattern of HoxA11 is more distal to HoxA9 expression. G-I, Expression pattern of HoxA13 mRNA. No expression of HoxA13 was detected at 5 days post amputation (G). Onset of the HoxA13 expression domain by 8 days is restricted distally to the blastema cells underneath the epidermis (H). Strong HoxA13 expression domain detected in mesenchymal cells in the 10 day blastema (I). Dashed line marks the plane of amputation. Scale bar, 500µm. Figure S6. Early onset of HOXA13 in hand blastema, and its repression by the proximalization factor, retinoic acid. To confirm the association of HOXA13 expression with hand identity, Onset of HOXA13 expression in hand blastemas was investigated through a time course. HOXA13 expression was seen in hand blastemas earlier than in upper arm blastemas. A.Earliest time point of HOXA13 expression (red) is 4 days post amputation C,D,E Zoomed inset of marked area in (A), in merge, HOXA13 and DAPI channels respectively. B. Administration of retinoic acid 1 day prior to amputation represses onset of HOXA13 (red) in 4 day blastema. F,G,H. Zoomed inset of marked areas in (B) in merge, HOXA13 and DAPI channels respectively. I.Strong HOXA13 expression in hand blastema already by 6dpa. K,L,M. Zoomed inset of marked area in (I), in merge, HOXA13 and DAPI channels respectively. J. Administration of retinoic acid 1 day prior to amputation represses onset of HOXA13 (red) in 6 day blastema. N,O,P. Zoomed inset of marked area in (J), in merge, HOXA13 and DAPI channels respectively. Scale bar, 500 µm. Figure S7. Standard deviation profile of the GFP fluorescence intensity data shown in Figure 3J. Standard deviation profile of the normalized GFP-fluorescence along the proximo-distal axis for limbs in the different transplantation categories: 8 day hand blastema transplants (8D Hand BL), the distal portion of the 8 day upper limb blastema (8D UA BL--dist), the proximal portion of the 8 day upper arm blastema (8D UA BL--prox) and the early blastema transplants (4D UA BL). HOXA9 Hs_HOXA9 Mm_HOXA9 Gg_HOXA9 Am_HOXA9 Xl_HOXA9 Dr_HOXA9 MATTGALGNY MATTGALGNY MSAPGTLSNY MSASGTLSNY MSTSGTLSNY MSTLGTLS.Y YVDSFLLGAD YVDSFLLGAD YVDSFLVPE. YVDSFLIHES YVDSFLIHE. YADSHLPHE. AADELSVGRY AADELGAGRY .GDELAAPRY EELVQSRYAA .GDDLVQPRF .NDDHLAPRF APGTLGQPPR APGTLGQPPR APAPLGPPPR AAGPLAGAGR APGSLAQPAR SSGPVVQQQS QAATLAEHPD QAAALAEHPD ..PALAEHPE Q.PGMGEHPE Q.AASAEHPE RELTLLEYSE FSPCSFQSKA FSPCSFQSKA LTPCSFQPKA FTPCSFQSKS FTPCSFQSKS QEPYTFQAKS TVFGASWNPV AVFGASWNPV PVFGPPWSPA PVFGSSWSPV SVFSSPWNPV SIFGASWSPV HAAGANAVPA HAAGANAVPA HPAGASGVPA HPQGAAGGSV HPQTANNVSS QPTGAS...I AVYHHHHHHP AVYHHHHHP. VYHPYAHHQ. PAVYHHHHP. VYHPYVHHQ. AYHPYIHHP. YVHPQAPVAA YVHPQAPVAA .......APV ..YVHHQAPG .......ASM .......CST Hs_HOXA9 Mm_HOXA9 Gg_HOXA9 Am_HOXA9 Xl_HOXA9 Dr_HOXA9 AAPDGRYMRS AAPDGRYMRS APPDGRYMRS APEASRYMRS SASDCRYMRS GDSDGASVRP WLEPTPG.AL WLEPTPG.AL WLEPVPG.SL WLEPMPG.AL WLDPMATGSL WALEPLP.AL SFAGLPSSRP SFAGLPSSRP SFPGLPTSRH SFPGLPAARH PFPAFPSSRS PFTGLSTDTH YGIKPEPLS. YGIKPEPLS. YGIKPEPLA. YGIKPEPLPP YGIKPEPVAT QDIKLEPLVG .ARRGDCPTL .ARRGDCPTL .ARRGDCTTF GTRRGDCTTF ..RRGDCSTY ...SGECTTH DT.HTLSLTD DT.HTLSLTD DT.HTLSLSD DSSHTLSLSD DS.RSLPVSD TLLVAETDNN YACGSPPVDR YACGSPPVDR YACGSPPVDR YGSSP....A YGCDSP.VDR TTQTERKVPD EKQPSEGAFS EKQPSEGAFS DKQSHEGAFS DKQSSEGAFP DKPPGDPPFA DAVSNGSHDE ENNAENESGG ENNAENESGG ENNGESEANG EAPAETEASG VTNEENLSNG KIPAETKLDL DKPPIDPNNP DKPPIDPNNP EKPHIDPNNP DKPAIDPNNP DKAPIDPNNP DPSKCNQDNP Hs_HOXA9 Mm_HOXA9 Gg_HOXA9 Am_HOXA9 Xl_HOXA9 Dr_HOXA9 AANWLHARST AANWLHARST AANWLHARST AANWLHARST AANWLHARST LSNWLHAKST RKKRCPYTKH RKKRCPYTKH RKKRCPYTKH RKKRCPYTKH RKKRCPYTKH RKKRCPYTKH QTLELEKEFL QTLELEKEFL QTLELEKEFL QTLELEKEFL QTLELEKEFL QTLELEKEFL FNMYLTRDRR FNMYLTRDRR FNMYLTRDRR FNMYLTRDRR FNMYLTRDRR FNMYLSRDRR YEVARLLNLT YEVARLLNLT YEVARLLNLT YEVARLLNLT YEVARLLNLT YEVARLLNLT ERQVKIWFQN ERQVKIWFQN ERQVKIWFQN ERQVKIWFQN ERQVKIWFQN ERQVKIWFQN RRMKMKKINK RRMKMKKINK RRMKMKKINK RRMKMKKINK RRMKMKKINK RRMKMKKCNK DRAKDE DRAKDE DRAKDE DRPKDE DRSKDE DRPKDI HOXA11 Hs_HoxA11 Mm_HoxA11 Gg_HoxA11 Am_HoxA11 Xl_HoxA11 Dr_HoxA11 .......... .........M .........M MRTARGSPSM MRTARGS.LM .........M MDFDERGPCS MDFDERGPCS MDFDERVPCS MDFDERVPCS MDFDERVPCS MDFDERVPVG SNMYLPSCTY SNMYLPSCTY SNMYLPSCTY SNMYLPSCTY SNMYLPSCTY SNMYLPGCTY YVSGPDFSSL YVSGPDFSSL YVSGPDFSSL YVSGPDFSSL YVSGPDFSSL YVSGTDFSSL PSFLPQTPSS PSFLPQTPSS PSFLPQTPSS PSFLPQNPAS PSFLPQTPSS PPFLPQTPSS RPMTYSYS.S RPMTYSYS.S RPMTYSYS.S RPMPYSYS.S RPMTYSYS.S CPMTYSYSTS NLPQVQPVRE NLPQVQPVRE NLPQVQPVRE NLPQVQPVRE NLPQVQPVRE SLPQVQSVRE VTFREYAIEP VTFREYAIEP VTFREYAIDP VTFREYAIDP VTFREYAIDT VSFRDYAIDT ATKWHPRGNL ATKWHPRGNL SSKWHPRNNL ASKWHPRSNL SSKWHHRNNL SSKWHSRGNL AHCYSAEELV AHCYSAEELV PHCYSAEEIM AHCYSAEELM PHCYSAEEIM PHCYATEDMV Hs_HoxA11 Mm_HoxA11 Gg_HoxA11 Am_HoxA11 Xl_HoxA11 Dr_HoxA11 HRDCLQAPSA HRDCLQAPSA HRDCLPSTTT HRDCGPNPNA HRDCLPASNT HRECLSNP.. AGVPGDVLAK AGVPGDVLAK ASM.GEVFGK GGM.GDVFGK ASV.GEMFAK .GTLGDMLSK SSANVYHHPT SSANVYHHPT STANVYHHPS GAPSPYHHPA NPTNVYH.PN NNSVLYH.SN PAVSSNFYST PAVSSNFYST ANVSSNFYST PGASSNFYST ANVSSNFYST SSHTSNVYGS VGRNGVLPQA VGRNGVLPQA VGRNGVLPQA VGRNGVLPQA VGRNGVLPQA VGRNGVLPQA FDQFFETAYG FDQFFETAYG FDQFFETAYG FDQFFETAYG FDQFFETAYG FDQFFETAYG TPENLASSDY TPENLASSDY TAENPSSADY GPES.GPADY TTES.QPSDY NVEN.QPTEH PGDKSAEKGP PGDKNAEKGP PPDKSGEKAP AGDKGCEKGS SVDKSCDKVA PVDRATSKAP PAATATSAAA QAAAATSAAA .......... .......... .......... .......... .AAAATGAPA VAAAATGAPA ..AAAGATAA ..PAVAGPPS ..AAAATTSS ....PPAESG Hs_HoxA11 Mm_HoxA11 Gg_HoxA11 Am_HoxA11 Xl_HoxA11 Dr_HoxA11 TSSSDSGGGG TSSSDGGGGG TSSSEGGCGG AEACRGEADR SEACREPEEK SDSCR..... GCRETAAAAE GCQE..AAAE .....AAAAA .........R ........ER .......... EKERRRRPES EKERRRRPES GKERRRRPES GAESSGGGGS RAESSGRS.S GTDETERCEE SSSPESSSGH SSSPESSSGH GSSPESSSGN SSSPESSSGN SSSSQSSSGN TSSPEPSSGN TEDKAGGSS. TEDKAGGSG. NEEKSGSSS. NEEKASGSAP NEDKANSSS. NEDKFSGSS. .GQRTRKKRC .GQRTRKKRC .GQRTRKKRC NGQRTRKKRC .GQRTRKKRC NGQKTRKKRC PYTKYQIREL PYTKYQIREL PYTKYQIREL PYTKYQIREL PYTKYQIREL PYTKYQIREL EREFFFSVYI EREFFFSVYI EREFFFSVYI EREFFFSVYI EREFFFSVYI EREFFFSVYI NKEKRLQLSR NKEKRLQLSR NKEKRLQLSR NKEKRLQLSR NKEKRLQLSR NKEKRLQLSR MLNLTDRQVK MLNLTDRQVK MLNLTDRQVK MLNLTDRQVK MLNLTDRQVK MLNLTDRQVK Hs_HoxA11 Mm_HoxA11 Gg_HoxA11 Am_HoxA11 Xl_HoxA11 Dr_HoxA11 IWFQNRRMKE IWFQNRRMKE IWFQNRRMKE IWFQNRRMKE IWFQNRRMKE IWFQNRRMKE KKINRDRLQY KKINRDRLQY KKINRDRLQY KKINRDRLQY KKINRDRLQY KKLNRDRLQY YSANPLL YSANPLL YSANPLL YSANPLL YSANPLQ YTTNPLL Hs_HOXA13 Mm_HOXA13 Gg_HOXA13 Am_HOXA13 Xt_HOXA13 Dr_HOXA13 MTASVLLHPR MTASVLLHPR MTASVLLHPR MTASVLLRPR MTASVLLHPR MTTSLLLRPR WIEPTVMFLY WIEPTVMFLY WIEP.VMFLY WIEP.VMFLY WAEP.VMFLY WIDP.VMFLY DNGGGLVADE DNGGGLVADE DNS....LDE DNS....LDE DNS....LEE DNGGG..LDD LNKNMEGAAA LNKNMEGAAA INKNMDG... INKNMDG... MNKNMDG... TSKNMEG... AAAAAAAAAA AAAAAAAAAA .......... .......... .......... .......... AGAGGGGFPH AGAGGGGFPH .......... .......... .......... .......... PAAAAAGGNF PAAAAAGGNF ...FHAGSNF ....FPGSSF ....FPVSSF ....FTGGNF SVAAAAAAAA SVAAAAAAAA ........AA .......... .......... .......... AAAANQCRNL AAAANQCRNL AAAANPCRNL .AAANQCRNL ..AANQCRNL ..SPSPCRNL MAHPAPLAPG MAHPAPLAPG MAHPAPLAAP MAHPAPLGPP IGHHAPLAP. MSHPASLAP. Hs_HOXA13 Mm_HOXA13 Gg_HOXA13 Am_HOXA13 Xt_HOXA13 Dr_HOXA13 AASAYSSAPG AAAAYSSAPG SAAAYTSS.. GAAYSAPGGS .SSAYPPS.. .SATYPSS.. EAPPSAAAAA EAPPSAAAAA EAPAAGMAEP EGPAE..... EVPVSAIAEP EVAAAAAGDS AAAAAAAAAA AAAAAAAAAA .......... .......... .......... .......... AAASSSGGPG AAASSSGGPG .......... .......... .......... .......... PAGPAGAEAA PAGPAGAEAA ........AV ........AG .........A .........G KQCSPCSAAA KQCSPCSAAA KQCSPCSAAV KQCSPCS..A KQCNPCS.AV KQCSPCS.AV QSSSGPAALP QSSSGPAALP QSSSG.AALP QGSSG.AALP QSTPN.ASLP QGSAS.ASIS YGYFGSG.YY YGYFGSG.YY YGYFGSG.YY YGYFGSG.YY YGYFGSG.YY YGYFGGGGYY PCARMGPHPN PCARMGPHPN PCRMT..HHN PCRVG..HHG PCRMS..HHN PCRMSHHHGS ..AIKSCAQP ..AIKSCAQP ..AIKSCAQP ..GIKSCAQP ..TIKSCSQP GGGVKTCAQS Hs_HOXA13 Mm_HOXA13 Gg_HOXA13 Am_HOXA13 Xt_HOXA13 Dr_HOXA13 ASAAAAAAFA AS..AAAAFA AS.....TFA SS......FA SS......FA PAS..GSPYG DKYMDTAGPA DKYMDTAGPA DKYMDTS.VS DKYMDTSGSA EKYMDTSGSA EKYMDTSAST AEEFSS.RAK AEEFSS.RAK GEEFTS.RAK GEEFTS.RAK GEDFPS.RPK GEDYTSSRAK EFAFYHQGYA EFAFYHQGYA EFAFY.QGYA EFAFY.QGYA EFAFY.QSYP EFALY.SSYA AGPYHHHQPM AGPYHHHQPV AGPY...QPV AGPY...QPV PGPY...QPV SSPY...QPV PGYLDMP.VV PGYLDMP.VV PGYLDVP.VV PGYLDMPTMV PSYLDMP.VV PSYLDVP.VV PGLGGPGESR PGLGGPGESR PTIGGPGEPR PTVGGPGEPR STIGTAGEPR QAISGPSEPR HEPLGLPMES HEPLGLPMES HDSL.LPMDS HEPL.LPMEP HEPL.LPMDG HESL.LPMES YQPWALPN.G YQPWALPN.G YQPWAITN.G YQPWALTN.G YQAWPITN.G YQPWAITTSG WNGQMYCPKE WNGQMYCPKE WNGQVYCPKE WNGQVYCSKE WNGQVYCAKD WNGQVYCTKE Hs_HOXA13 Mm_HOXA13 Gg_HOXA13 Am_HOXA13 Xt_HOXA13 Dr_HOXA13 QAQPPHLWKS QTQPPHLWKS QSQPPHLWKS QGQPPHLWKS QAQPTHLWKS QQQTGNVWKS TLPDVVSHP. TLPDVVSHP. TLPDVVSHP. SLPDVVSHP. SLPDVV.HQ. SIPESVSHGG SDASSYRRGR SDASSYRRGR SDANSYRRGR SDANSYRRGR SDSSSYRRGR ADGSSFRRGR KKRVPYTKVQ KKRVPYTKVQ KKRVPYTKVQ KKRVPYTKVQ KKRVPYTKVQ KKRVPYTKVQ LKELEREYAT LKELEREYAT LKELEREYAT LKELEREYAT LKELEREYAT LKELEREYAT NKFITKDKRR NKFITKDKRR NKFITKDKRR NKFITKDKRR NKFITKDKRR NKFITKDKRR RISATTNLSE RISATTNLSE RISATTNLSE RISATTNLSE RISATTNLSE RISAQTNLSE RQVTIWFQNR RQVTIWFQNR RQVTIWFQNR RQVTIWFQNR RQVTIWFQNR RQVTIWFQNR RVKEKKVINK RVKEKKVINK RVKEKKVINK RVKEKKVINK RVKEKKVINK RVKEKKVVNK LKTTS LKTTS LKTTS LKTTS LKSTS LKSSS HOXA13 FigureS1
© Copyright 2026 Paperzz