29/03/2015 10.2 Product and Quotients of Functions f ( x) and g ( x) • • • • are functions that exist and are defined over a domain. f g ( x) f ( x) g ( x) Sum Difference f g ( x) f ( x) g ( x) f g ( x ) f ( x ) g ( x ) Product Quotient f f ( x) , g ( x) 0 ( x) g ( x) g Why are there restrictions on the variable or non‐permissible values for a variable? Math 30‐1 1 The product of two linear functions is a quadratic function. The quotient of two linear functions is a rational function. Determine the product of the functions in simplest form. f ( x) x 3 2 h( x) fg ( x) f ( x) g ( x) x 3 x 2 2 g ( x) x 2 h( x ) x 2 6 x 9 x 2 h( x) x3 4 x 2 3 x 18 Math 30‐1 2 1 29/03/2015 Determine the quotient of the functions in simplest form. r ( x) x 1 s ( x) x 4 2 x3 5 x 2 7 x 5 s h( x ) ( x ) r s ( x) h( x ) r ( x) x 4 2 x3 5 x 2 7 x 5 h( x ) x 1 h( x) x 3 3 x 2 2 x 5, x 1 Math 30‐1 Sketch the graph of h(x) = fg(x) Domain Range 3 Sketch the graph of h(x) = (ff)(x) What would the graph of h(x) = (f/f)(x) look like? Math 30‐1 4 2 29/03/2015 g f x Sketch the graph of h( x) g x f Sketch the graph of h( x) Domain Range x | x 3 y | y 7 Domain x | x 2 Range 1 y | y 2 Math 30‐1 5 Consider the function h(x) to be in the form h( x) f g ( x) k ( x) h( ) sin 2 sin cos Determine the expressions for f(x), g(x), and k(x) h( ) sin sin 1 cos f ( ) sin g ( ) sin 1 k ( ) cos Math 30‐1 6 3 29/03/2015 Page 496 1, 2, 3, 6, 7, 8, 11, 12, 13 C3 Math 30‐1 7 4
© Copyright 2026 Paperzz