PROGRESS CHECK – ALGEBRA I VERSION 2 + • ÷

PROGRESS CHECK – ALGEBRA I
VERSION 2
CALCULATORS ARE NOT TO BE USED ON THIS TEST
For each question, select the correct response. (Assume no variable will make the
numerator or denominator zero.)
1.
Simplify:
(x + 2) (x – 4)
x(3x + 6)
4.
a) x + 6
3x
b) x – 4
3x
c) x – 2
x
d) x + 6
x
2
e) x – 2x – 8
3x2 + 6x
2.
Add:
x+1
x+3
+
x+2
x+3
5.
d) x + 6
x+3
e) 2x + 6
x(x + 4)
x+5
a) x2 (x + 4)
(x + 5)2
b) x + 4
c) 2x (x + 4)
x+5
d) x + 6
x
_
2
3x
Multiply:
x–2 • 7+x
x(x + 7) x – 2
a) 1
x
b) 2x + 5
x2 + 7x
c) x + 7
x
d) x + 6
x
e) x2 + 5x – 14
3x – 5
c) 2
Divide:
4x + 3
x
a) 12x + 7
3x
b) 4x + 18
3x
c) 2x + 3
x
d) x + 6
3x
2
e) x + 4x – 12
x – 2x
a) 2x + 3
x+3
b) 2x + 6
2x + 6
3.
Subtract:
÷
x
5+x
6.
Multiply:
a)
b)
c)
d)
e)
(x – 3) (2x + 1)
3x –2
2x2 – 3
2x2 – 5x + 3
2x2 + 5x + 3
2x2 – 5x - 3
e) x2 + 4x – 12
3x2 – 6x
Developed by the Milwaukee Mathematics Partnership with support by the National Science Foundation under
Grant No. 0314898.
Progress Check – Algebra 1 – Version 2
7.
Evaluate
a)
b)
c)
d)
e)
3–x
x+5
if x = – 3
0
(6/8)
(-6/8)
(6/7)
3
Factor:
a – 5a – 6
a) (a + 2) (a + 3)
b) (a – 2) (a – 3)
c) (a – 5) (a – 6)
d) (a + 5) (a – 1)
e) (a – 6) (a + 1)
9.
Factor: 6x2 + x - 2
a) (6x – 2) (x + 1)
b) (3x – 2) (2x + 1)
c) (6x – 1) (x + 2)
d) (3x + 2) (2x – 1)
e) (3x + 2) (2x + 1)
15. Find the equation of the line which
passes through (2, -4) and (4, -3).
a) y = –2x – 6
b) y = 2x – 5
c) y = (1/2)x – 5
d) y = (-1/2)x + 6
e) y = –3x + 4
10. Factor: 9x2 + 12xy + 4y2
a) (3x + 2) (3x – 2)
b) (3x + 2y) (3x – 2y)
c) (3x + 2y) 2
d) (9x + 4y) (x + y)
e) (3x – 2y) 2
11. Simplify:
a) 2x + 3
b) x – 1
c) x + 11
d) 3
e) x + 1
2
14. Find the slope of the line which
passes through (-1, 0) and (6, 3).
a) (7/3)
b) (3/7)
c) (11/1)
d) (10/8)
e) (-3/7)
2
8.
page 2
13. Divide:(x – 8x + 10x + 15) ÷ (x – 3)
a) x3 + 4x2 – 2x + 1
b) x3 – 4x2 + 2x + 1
c) x2 + 5x + 5
d) x2 – 5x – 5
e) x + 3
3
16. Find the equation of the line which
passes through (-2, 2) and has a
slope of –2.
a) y = –2x + 3
b) y = 2x – 3
c) y = –2x – 4
d) y = 2x + 3
e) y = –2x – 2
2(x + 4) – (x – 3)
2
12. Completely Factor: 4x – 36y
a) 4 (x – 3y) (x + 3y)
b) (4x + 6y) (4x – 6y)
c) (4x – 36y) (4x + 36y)
d) (2x – 9y) (2x + 9y)
e) (4x – y) (x – 36y)
2
17. Write the slope-intercept form of
y + 3 = 3(x – 1).
a) y = 3x + 3
b) y = 5x + 1
c) y = 5x – 2
d) y = 3x – 1
e) y = 3x – 6
Developed by the Milwaukee Mathematics Partnership with support by the National Science Foundation under
Grant No. 0314898.
Progress Check – Algebra 1 – Version 2
page 3
18. Find the y-intercept for the line
5x + 4y = 20.
a) (0, 5)
b) (0, 0)
c) (–5, 0)
d) (0, –5)
e) (5, 0)
22. Rewrite with fractional exponents:
√ 16
(1
a) 4 /(12)
b) 16 (1/2)
c) 16 /4)
d) 4
e) 42
19. Solve:
x2 – 3x + 2 = 0.
a) x = 3, 2
b) x = 1, -2
c) x = -1, 2
d) x = 1, 2
e) x = -1, -2
23. Evaluate:
a) 13.5
b) 364.5
c) 729
d) 27
e) 54
20. Solve using the Quadratic formula:
3x2 – 3x – 1 = 0.
24. Multiply and simplify:
9
4 6
√ 81 x y
a) -3 + √21
6
a) 27x4y6
b) 3 + √21
6
b) √243 x7y12
c)
1 + √7
2
d) 3 + √21
4
e) -3 + √7
2
21. Solve A = ½ h (b1 + b2) for b2.
a) 2A – b1
h
b) 2A – b1
h
c) 2A + b1
h
d) 2A + b1
h
(3
•
/2)
√ 3y
6
c) 9x2y6
d) 3x2y4 √ 9x
e) None of the above
25. Simplify:
a)
x3
3y2
b)
y2
3x3
3x-3
y-2
3y2
c)
x3
x-3
3y-2
e) 3x3y2
d)
e) A – b1
h
Developed by the Milwaukee Mathematics Partnership with support by the National Science Foundation under
Grant No. 0314898.
Progress Check – Algebra 1 – Version 2
26. Evaluate | 3x – 7 | if x = 3
a) 1
b) -1
c) -2
d) 2
e) 16
27. Solve:
| 2y + 1 | = 5
a) y = 2
b) y = -3
c) y = 2, 3
d) y = 2, -3
e) y = 3
28. Which is a solution for:
2x – 1 < 3x – 2
a)
b)
c)
d)
e)
-4 -3 -2 -1 0
1
2
3
4
-4 -3 -2 -1 0
1
2
3
4
-4 -3 -2 -1 0
1
2
3
4
-4 -3 -2 -1 0
1
2
3
4
-4 -3 -2 -1 0
1
2
3
4
29. Which is a solution for:
x < -2
y < -1
{
a)
b)
c)
d)
e)
(-3, 2)
(-3, -2)
(3, 2)
(3, -2)
(2, -1)
30. Which is a solution for:
y < 2x – 1
y < (-1/3) x + 3
{
a)
b)
c)
d)
e)
(3, 2)
(-3, -2)
(-3, 2)
(-3, 3)
(6, 2)
page 4
31. Find the solution:
3x + 3y = 6
2x – 3y = 4
{
a)
b)
c)
d)
e)
(3, 0.667)
(2, -3)
(2, 0)
(5, 10)
(3, 10)
32. Find the equation of the line parallel
to y = 3x – 4 and going through the
point (-2,1).
a) y - 1 = (-1/3)(x – 2)
b) y + 1= (-1/3)(x + 2)
c) y + 1 = 3(x – 2)
d) y –1 = 3(x + 2)
e) y – 4 = 3(x – 4)
33. Find the equation of the line that is
perpendicular to y = (-1/3) x + 2 and
goes through (3,-4).
a) y = (-1/3) x + 4
b) y = 3x –13
c) y = 3x + 13
d) y = (-1/3) x – 4
e) y = 3x + 4
34. Solve:
2x – 44 = –2x + 8
a) -13
b) (52/5)
c) (39/4)
d) 13
e) ( -52/5)
35. Solve: (2/9) x + (1/7) = (1/3) x + (1/14)
a) (6/7)
b) 1(1/16 )
c) (3/10 )
d) (9/14)
e) 2 (9/10)
Developed by the Milwaukee Mathematics Partnership with support by the National Science Foundation under
Grant No. 0314898.
Progress Check – Algebra 1 – Version 2
36. Solve:
a) 4.7
b) 24
c) -7
d) -29
e) -87
3(x – 9) – 2x = 2(x + 30)
37. Factor: x2 + 5x + 6
a) (x + 2) (x + 3)
b) (x + 3) (x + 3)
c) (x + 9) (x + 1)
d) (x + 1) (x + 3)
e) (x + 4) (x + 5)
38. Multiply: 4ab3c5 • 3yac4
a) 12 ab3c9y
b) 12a2b3c9y
c) 12b2y
d) 12a2b2c6y
e) 12a2b2cy
39. Simplify: x3y8
x-2y4
4
a) x/y
b) x5/y12
c) x5y4
d) xy-4
e) None of the above
40. Simplify: (x3y4)4
a) x34y44
b) x(3/4) y(3/5)
c) x7y8
d) x(4/3) y
e) x12y16
page 5
42. Which of the following is equivalent
to y = 4x + 7 ?
a) 4x – y = -7
b) 4x – y = 7
c) 4x + y = 7
d) 4x + y = -7
e) None of the above
43. Simplify: (x + 2) (x + 3)
2x
(x + 3)
4x + 6
(x
+
2)
(x
+
3)
a)
x
2
b) (x + 2) (x + 3)
x
c)
(x + 2) (2x + 3)
x
d)
(x + 2) (x + 3) 2
x
e) (x + 2) (x + 3)
4x
44. Rationalize the denominator:
4
√x
a) 4x
b) 4√x
c) 4√x
x
d) 4x2
e) 4x
√x
41. Rewrite 3x + 2y = 2 in
slope-intercept form.
a) y = 3x – 2
b) y = -3x – 2
c) y = (3/2)x – 1
d) y = (-3/2)x + 1
e) y = -3x + 2
Developed by the Milwaukee Mathematics Partnership with support by the National Science Foundation under
Grant No. 0314898.