Completing the Square University of Minnesota Completing the Square Preliminaries and Objectives Preliminaries • Expanding binomials like (x + a)2 • General form of a circle, ellipse, parabola, hyperbola Objectives • Complete the square University of Minnesota Completing the Square Standard Form of Conic Sections Standard form of a circle: (x − h)2 + (y − k )2 = r 2 Standard form of a vertical parabola: y − k = ±a(x − h)2 Standard form of an horiz. parabola: x − h = ±a(y − k )2 Standard form of an ellipse: (x − h)2 (y − k )2 + =1 a2 b2 Standard form of a horiz. hyperbola: (x − h)2 (y − k )2 − =1 a2 b2 Standard form of a vertical hyperbola: (y − k )2 (x − h)2 − =1 b2 a2 University of Minnesota Completing the Square Example 1 Write the circle below in standard form y 2 + 4x = 6y − x 2 + 23 Goal : (x − h)2 + (y − k )2 = r 2 University of Minnesota Completing the Square Example 1 Step 1: Rearrange the terms y 2 + 4x = 6y − x 2 + 23 x 2 + 4x + + y 2 − 6y + = 23 + Goal : (x − h)2 + (y − k )2 = r 2 University of Minnesota Completing the Square Example 1 Step 2: Factor out coefficients on x 2 , y 2 y 2 + 4x = 6y − x 2 + 23 x 2 + 4x + + y 2 − 6y + = 23 + Goal : (x − h)2 + (y − k )2 = r 2 University of Minnesota Completing the Square Example 1 Step 3: Determine perfect square y 2 + 4x = 6y − x 2 + 23 x 2 + 4x + + y 2 − 6y + = 23 + (x + 2)(x + 2) + (y − 3)(y − 3) = 23 + Goal : (x − h)2 + (y − k )2 = r 2 University of Minnesota Completing the Square Example 1 Step 4: Supply the missing constant y 2 + 4x = 6y − x 2 + 23 x 2 + 4x + 4 + y 2 − 6y + 9 = 23 + (x + 2)(x + 2) + (y − 3)(y − 3) = 23 + Goal : (x − h)2 + (y − k )2 = r 2 University of Minnesota Completing the Square Example 1 Step 4: Supply the missing constant y 2 + 4x = 6y − x 2 + 23 x 2 + 4x + 4 + y 2 − 6y + 9 = 23 + 4 + 9 (x + 2)(x + 2) + (y − 3)(y − 3) = 23 + 13 = 36 Goal : (x − h)2 + (y − k )2 = r 2 University of Minnesota Completing the Square Example 1 Step 5: Write in standard form y 2 + 4x = 6y − x 2 + 23 x 2 + 4x + 4 + y 2 − 6y + 9 = 23 + 4 + 9 (x + 2)(x + 2) + (y − 3)(y − 3) = 23 + 13 = 36 (x + 2)2 + (y − 3)2 = 62 Goal : (x − h)2 + (y − k )2 = r 2 University of Minnesota Completing the Square Example 1 Step 5: Write in standard form y 2 + 4x = 6y − x 2 + 23 x 2 + 4x + 4 + y 2 − 6y + 9 = 23 + 4 + 9 (x + 2)(x + 2) + (y − 3)(y − 3) = 23 + 13 = 36 (x + 2)2 + (y − 3)2 = 62 Goal : (x − h)2 + (y − k )2 = r 2 This is a circle with radius = 6, with center at (−2, 3) University of Minnesota Completing the Square Example 2 Write the parabola below in standard form y + x 2 = 8x − 19 Goal : y − k = A(x − h)2 University of Minnesota Completing the Square Example 2 Step 1: Rearrange the terms y + x 2 = 8x − 19 y + 19 + = −x 2 + 8x + Goal : y − k = A(x − h)2 University of Minnesota Completing the Square Example 2 Step 2: Factor out coefficient on x 2 y + x 2 = 8x − 19 y + 19 + = −x 2 + 8x + y + 19 + = −(x 2 − 8x + Goal : y − k = A(x − h)2 University of Minnesota Completing the Square ) Example 2 Step 3: Determine perfect square y + x 2 = 8x − 19 y + 19 + = −x 2 + 8x + y + 19 + = −(x 2 − 8x + y + 19 + = −(x − 4)(x − 4) Goal : y − k = A(x − h)2 University of Minnesota Completing the Square ) Example 2 Step 4: Supply the missing constant y + x 2 = 8x − 19 y + 19 + = −x 2 + 8x + y + 19 + = −(x 2 − 8x + 16) y + 19 + = −(x − 4)(x − 4) Goal : y − k = A(x − h)2 University of Minnesota Completing the Square Example 2 Step 4: Supply the missing constant y + x 2 = 8x − 19 y + 19 + = −x 2 + 8x + − 16 y + 19 + = −(x 2 − 8x + 16) y + 19 + = −(x − 4)(x − 4) Goal : y − k = A(x − h)2 University of Minnesota Completing the Square Example 2 Step 4: Supply the missing constant y + x 2 = 8x − 19 y + 19 + − 16 = −x 2 + 8x + − 16 y + 19 + − 16 = −(x 2 − 8x + 16) y + 19 + − 16 = −(x − 4)(x − 4) Goal : y − k = A(x − h)2 University of Minnesota Completing the Square Example 2 Step 5: Write in standard form y + x 2 = 8x − 19 y + 19 + − 16 = −x 2 + 8x + − 16 y + 19 + − 16 = −(x 2 − 8x + 16) y + 19 + − 16 = −(x − 4)(x − 4) y + 3 = −(x − 4)2 Goal : y − k = A(x − h)2 University of Minnesota Completing the Square Example 2 Step 5: Write in standard form y + x 2 = 8x − 19 y + 19 + − 16 = −x 2 + 8x + − 16 y + 19 + − 16 = −(x 2 − 8x + 16) y + 19 + − 16 = −(x − 4)(x − 4) y + 3 = −(x − 4)2 Goal : y − k = A(x − h)2 This is a parabola, pointed downward, with vertex at (4, −3) University of Minnesota Completing the Square Example 3 Write the hyperbola below in standard form 4y 2 + 12x = 9x 2 + 4y + 39 Goal : (y − k )2 (x − h)2 − =1 b2 a2 University of Minnesota Completing the Square Example 3 Step 1: Rearrange the terms 4y 2 + 12x = 9x 2 + 4y + 39 4y 2 − 4y + − 9x 2 + 12x + Goal : = 39 + (y − k )2 (x − h)2 − =1 b2 a2 University of Minnesota Completing the Square Example 3 Step 2: Factor out coefficient on x 2 4y 2 + 12x = 9x 2 + 4y + 39 4y 2 − 4y + − 9x 2 + 12x + = 39 + 4(y 2 − y + ) − 9(x 2 − 43 x + ) = 39 + Goal : (y − k )2 (x − h)2 − =1 b2 a2 University of Minnesota Completing the Square Example 3 Step 3: Determine perfect square 4y 2 + 12x = 9x 2 + 4y + 39 4y 2 − 4y + − 9x 2 + 12x + = 39 + 4(y 2 − y + ) − 9(x 2 − 43 x + ) = 39 + 4(y − 12 )(y − 21 ) − 9(x − 23 )(x − 23 ) = 39 + Goal : (y − k )2 (x − h)2 − =1 b2 a2 University of Minnesota Completing the Square Example 3 Step 4: Supply the missing constant 4y 2 + 12x = 9x 2 + 4y + 39 4y 2 − 4y + − 9x 2 + 12x + = 39 + 4(y 2 − y + 14 ) − 9(x 2 − 43 x + 49 ) = 39 + 4(y − 12 )(y − 21 ) − 9(x − 23 )(x − 23 ) = 39 + Goal : (y − k )2 (x − h)2 − =1 b2 a2 University of Minnesota Completing the Square Example 3 Step 4: Supply the missing constant 4y 2 + 12x = 9x 2 + 4y + 39 4y 2 − 4y + 1 − 9x 2 + 12x + − 4 = 39 + 4(y 2 − y + 14 ) − 9(x 2 − 43 x + 49 ) = 39 + 4(y − 12 )(y − 21 ) − 9(x − 23 )(x − 23 ) = 39 + Goal : (y − k )2 (x − h)2 − =1 b2 a2 University of Minnesota Completing the Square Example 3 Step 4: Supply the missing constant 4y 2 + 12x = 9x 2 + 4y + 39 4y 2 − 4y + 1 − 9x 2 + 12x + − 4 = 39 + 1 − 4 4(y 2 − y + 14 ) − 9(x 2 − 43 x + 49 ) = 39 + − 3 4(y − 12 )(y − 21 ) − 9(x − 23 )(x − 23 ) = 39 + − 3 = 36 Goal : (y − k )2 (x − h)2 − =1 b2 a2 University of Minnesota Completing the Square Example 3 Step 5: Write in standard form 4y 2 + 12x = 9x 2 + 4y + 39 4y 2 − 4y + 1 − 9x 2 + 12x + − 4 = 39 + 1 − 4 4(y 2 − y + 14 ) − 9(x 2 − 43 x + 49 ) = 39 + − 3 4(y − 12 )(y − 21 ) − 9(x − 23 )(x − 23 ) = 39 + − 3 = 36 (y − 12 )2 (x − 23 )2 − =1 9 4 Goal : (y − k )2 (x − h)2 − =1 b2 a2 University of Minnesota Completing the Square Example 3 Step 5: Write in standard form 4y 2 + 12x = 9x 2 + 4y + 39 4y 2 − 4y + 1 − 9x 2 + 12x + − 4 = 39 + 1 − 4 4(y 2 − y + 14 ) − 9(x 2 − 43 x + 49 ) = 39 + − 3 4(y − 12 )(y − 21 ) − 9(x − 23 )(x − 23 ) = 39 + − 3 = 36 (y − 12 )2 (x − 23 )2 − =1 9 4 Goal : (y − k )2 (x − h)2 − =1 b2 a2 Begin with an hyperbola with the y -axis as the transverse axis. The asymptotes have slope 32 . The vertices are at (0, 3) and (0, −3). This hyperbola is then shifted to the right 23 and up 21 University of Minnesota Completing the Square Example 3 y x y2 x2 − =1 9 4 (y − 12 )2 (x − 23 )2 − =1 9 4 University of Minnesota Completing the Square Recap Completing the Square: • Identify the general form and rearrange terms • Factor out coefficients on x 2 and y 2 • Determine perfect square • Supply missing constants • Write equation in standard form University of Minnesota Completing the Square Credits Written by: Mike Weimerskirch Narration: Mike Weimerskirch Graphic Design: Mike Weimerskirch University of Minnesota Completing the Square Copyright Info c The Regents of the University of Minnesota & Mike Weimerskirch For a license please contact http://z.umn.edu/otc University of Minnesota Completing the Square
© Copyright 2026 Paperzz