Comprehensive Catalogue of Polyhedra Debra Briggs Supervised by Dr David Yost Federation University Australia ABSTRACT Complete catalogues of polyhedra with up to 8 vertices or 8 faces were given by Britton & Dunitz (1973) and Federico (1974). The aim of this project was to produce a more comprehensive catalogue, thus providing a resource for examples and conjectures. In particular, all polyhedra with V=F=9 represented as planar graphs are given here, their duals are calculated and most are classified in terms of Minkowski decomposability. 1 1. Introduction: Every polyhedron has a graph. It has vertices, it has edges, and therefore it is a graph. Theorem: Let G be a planar, connected graph. Let V be the number of vertices, E the number of edges, and F the number of faces in G, including the unbounded face. Euler's Theorem states that if a 3-dimensional polyhedron has π vertices, πΈ edges and πΉ faces, then π, πΈ, πΉ are related by the formula π β πΈ + πΉ = 2. Steinitzβ Theorem: A graph G is the edge graph of a polyhedron iff G is a simple planar graph which is 3-connected. (Ziegler, 1995, Chapter 4). Steinitz in 1906 gave a complete characterisation of the triples (π, πΈ, πΉ) for which there exists a polyhedron with π vertices, πΈ edges and πΉ faces. Steinitzβ Theorem characterises which graphs are graphs of polyhedra. If you have a polyhedron then its graph is planar and 3-connected. Steinitzβ theorem tells us that the converse is true. Therefore it reduces the question of characterising polyhedra to graph theory which simplifies it. 2. Construction of Polyhedra with 9 faces and 9 vertices: Britton & Dunitz (1973) catalogued all of the Polyhedra up to 8 vertices, and Federico (1974) used Steinitzβ Theorem to catalogue all of the Polyhedra with up to 8 faces. So the next step was to catalogue all of the Polyhedra with 9 faces and 9 vertices. As you can see on the table from Federico (1969) there are 296 of them. Federico (1969) Voytekhovsky (2014) gives a historical account of the classification of polyhedra and mentions that T.P Kirkman initiates the systematic and enumeration of the combinatorial types of polyhedra without drawing the graphs. 2 Reverend Thomas P. Kirkman, an amateur mathematician in countryside England did a lot of work on βpolyhedraβ (Biggs, 1980) in the mid 19th century. Kirkman (1863) described all polyhedra with up to 16 edges, and some with 17 and 18 edges, but his notation and terminology is very unique and rather challenging to translate. Some would even say incomprehensible. Kirkman attempted to construct all β9-acral 9-edra polyedraβ (1878), which was seemingly missed by Voytekhovsky, and using his work I was able to construct the planar graphs of all 296 polyhedra with 9 faces and 9 vertices. Since Steinitzβ Theorem was proved in 1906, Kirkman wasnβt aware of it. Therefore he wasnβt aware that he could make his work simpler by drawing his polyhedra as planar graphs. So his diagrams are therefore tricky to follow. While reconstructing his drawings, I was verifying his work and finding the dual pairs, which no-one has attempted to do for 9 faces and 9-vertices before. A number of people, e.g. Federico (1969), have used computer programs to verify that there are 296 of them but theyβve never published a catalogue. Figure 2.1 explains how I preserved Kirkmanβs notation for the asymmetrical polyhedra, the letters π΄, π΅, πΆ, π·, πΈ, and πΉ are used. Eulerβs relation and if T, Q, P, H, S, and O, denote the number of triangles, quadrilaterals, pentagons, hexagons, heptagons and octagons, then π + π + π + π» + π + π = πΉ = 9 and 3π + 4π + 5π + 6π» + 7π + 8π = 2πΈ = 32 The following solutions to these equations are the only possible combinations of faces that exist. Letter Number Combination π΄ 10017 π΅ 1107 πΆ 1026 π· 216 πΈ 135 πΉ 54 π½ 100008 Faces Vertices 1 hexagon, 1 quadrilateral and 7 triangles. 1 hexagon, 1 pentagon and 7 triangles. 1 hexagon, 2 quadrilaterals and 6 triangles. 2 pentagons, 1 quadrilateral and 6 triangles. 1 pentagon, 3 quadrilaterals and 5 triangles. 5 quadrilaterals and 4 triangles 1 octagon and 8 triangles. 1 vertex of degree 7, 1 of degree 4 and 7 of degree 3. 1 vertex of degree 6, 1 of degree 5 and 7 of degree 3. 1 vertex of degree 6, 2 of degree 4 and 6 of degree 3. 2 vertices of degree 5, 1 of degree 4 and 6 of degree 3. 1 vertex of degree 5, 3 of degree 4 and 5 of degree 3. 5 vertices of degree 4 and 4 of degree 3. 1 vertex of degree 8 and 8 of degree 3. Figure 2.1 The first letter corresponds to the number of faces and the second letter refers the degrees of the vertices, for example πΈπ· represents 1 pentagon, 3 quadrilaterals and 5 triangles, and 2 vertices of degree 5, 1 of degree 4 and 6 of degree 3. 3 I have introduced π½ β 100008 which represents the π½π½π , the octagonal pyramid. It may even be useful for future catalogues. Within each group there are a certain number of them, so we just number them. The πΈπΈβs have 67 in their group. Kirkman may have had some logic behind the notation for his symmetrical polyhedra, but there is no reason to keep symmetrical and asymmetrical separate, so I have combined them. His polyhedra πΎ is now πΉπ·π 1 . The π meaning it has symmetry. There are 9 misprints in Kirkmanβs (1878) catalogue which I have corrected: ο· π9 (now πΉπΈπ 3 ) was combinatorially equivalent with π8 ,and πΈπΈ33 was combinatorially equivalent with πΈπΈ32 . ο· π1β1 (now πΉπΉπ 8 ) and πΈπ·11 had 10 faces. ο· πΈπΈ22 had 10 vertices. ο· πΈπΈ1 had 8 faces. ο· πΈπΈ37 had 8 vertices πΈπΉ8 had 8 faces and one of its vertices was of degree 2. ο· Each of the above polyhedra were able to be found through their duals. ο· πΆπΆ2 , which was combinatorially equivalent with πΆπΈ2 , is self dual. Kirkman (1878) stated that there are 6 βautopolarβ (self-dual) polyhedra within the πΆπΆ polyhedra. I had found 5, so πΆπΆ2 must also be self dual. Ernest JucoviΔ (1962) catalogued all of the self dual polyhedra with 9 vertices and 9 faces by giving their matrix representation but not diagrams. With his work, I was able to match his matrices with all of the self-dual polyhedra and draw the correct πΆπΆ2 . a b c d e f g h i A 0 1 1 1 1 1 0 1 0 B 1 1 0 0 0 0 1 0 1 C 1 0 0 0 0 1 1 1 0 D 1 0 0 0 1 1 0 0 0 E 1 0 0 1 1 0 0 0 0 F 1 0 1 1 0 0 0 0 0 G 0 1 1 0 0 0 0 0 1 JucoviΔ (1961) H 1 0 1 0 0 0 0 0 1 I 0 1 0 0 0 0 1 1 0 The matrix to the left is one from JucoviΔ (1961). If you give each column the letters π΄ to πΌ and each row the letters π to π, you get the vertices for each face. π (π΅πΆπ·πΈπΉπ») π (π΄π΅πΊπΌ) π (π΄πΉπΊπ») π (π΄πΈπΉ) π (π΄π·πΈ) π (π΄πΆπ·) π (π΅πΆπΌ) π (π΄πΆπΌ) π (π΅πΊπ») Face π has 6 vertices so it must be a hexagon. Conversely, vertex π΄ appears on 6 faces so it must be a vertex of degree 6. After all of the faces and vertices are organised, the polyhedra can be drawn as a planar graph as shown here. On the other hand, every polyhedron can be represented as a matrix. It is fairly straightforward to see that if a polyhedron is self dual, then its vertices and faces can be numbered in such a way that the incidence matrix is symmetric. 4 3. Determining Decomposability of Polyhedra of V=F=9 In 1954, Gale defined decomposability and stated its basic results (although he called it reducibility). Shephard (1963) investigated decomposability more seriously and gave some useful criteria. Decomposability is essentially breaking down something to its simplest form. A polyhedron is decomposable iff itβs the sum of two polyhedra which are not similar. In two-dimensions, everything is decomposable except the triangle. A square is the sum of two line segments and a hexagon is the sum of two triangles or the sum of three line segments (as shown in the pictures below). or In three dimensions itβs much harder to determine whatβs decomposable and whatβs not. A simple example is a prism. For example, a triangular prism is the sum of a triangle and the line segments. + = Kallay, in 1982, was working on indecomposable polytopes and came up with an idea on reducing them to graph theory. He invented a definition of decomposability of geometric graphs. He called a geometric graph indecomposable if every local similarity is a similarity or a constant function (Kallay 1982). A local similarity is a mapping which preserves the direction of edges. This means if π’π£ is an edge and π’ and π£ are adjacent vertices then π π’ β π π£ is either zero or a positive multiple of π’ β π£. A local similarity between indecomposable geometric graphs is determined by its actions on two points (and is necessarily connected). Kallay also found some conditions which imply indecomposablity in terms purely of the graph, which weβll get to in a moment. In 1987, Smilansky had some major breakthroughs regarding decomposability. His simplest and most impressive result is βTHEOREM 6.7. If a 3-polytope π has more vertices than facets, then π is decomposable.β (1987). He also showed that if πΉ is greater than or equal to 2π β 6 it implies indecomposability. For a graph to be combinatorially decomposable, all polyhedra with the same graph are decomposable. For a graph to be combinatorially indecomposable, all polyhedra with the same graph are indecomposable. For a graph to be conditionally decomposable, there exists 2 polyhedra with the same graph, one decomposable, one indecomposable (Smilansky, 1987). 5 1 Smilanskyβs table shows the polyhedra which satisfy 2 π + 2 β€ πΉ < π are decomposable. For 2π β 4 < πΉ < 2π β 7 the polyhedra are all indecomposable. For πΉ = 2π β 7, the polyhedra are either decomposable or indecomposable. In other cases, there exist examples of decomposable, indecomposable and conditionally decomposable (ambiguous). Although it doesnβt tell you how many of each type. It just states that there is at least 1 of each type. Smilansky (1987) So it is interesting to classify individually the polyhedra with π β€ πΉ β€ 2π β 7. This was essentially known for π = πΉ = 7, and was completed for π = πΉ = 8 in Yost (2007) and for π = 8, πΉ = 9 in Przeslawski and Yost (2016). In particular, all polyhedra with 8 or fewer vertices have already been classified, and the next case to study is π = πΉ = 9. Dr David Yost, with my help, has been working through them to determine how many polyhedra are decomposable, indecomposable and ambiguous with the purpose to see whether or not an interesting pattern turns up. I have been using certain techniques to see how many are decomposable, indecomposable, and ambiguous within the 296 polyhedra with 9 faces and 9 vertices. Most of the polyhedra we study turn out to be indecomposable. In most cases, indecomposabilty can be seen quickly by applying the following some basic tools. Kallay showed that if a subgraph G of the graph of a polyhedron π is indecomposable and contains all the vertices of π, then π itself is indecomposable. 6 It was noted in Przeslawski and Yost (2008) that this still holds if πΊ just contains at least one vertex from every face of π. The following two are sufficient to prove indecomposability of many polyhedra. 1. A single edge is indecomposable 2. If πΊ is indecomposable and if π£ is not in πΊ and if π£ is adjacent to 2 vertices in πΊ, then the sum of πΊ and π£ and the 2 edges is indecomposable Clearly 1 and 2 imply that any triangle is indecomposable, and leads for example to Smilansky (1987. THEOREM 5.1.) If a polyhedron π has a strongly connected set of triangular faces, that touches all the facets of π, then π is indecomposable. For some more difficult cases, the following two may need to be applied. 3. Non-planar 4-cycle is indecomposable (Przeslawski, K. & Yost, D. 2008, Proposition 2). 4. If πΊ and π» are two indecomposable graphs, with two vertices in common, and the edge between those vertices belongs to at most one of πΊ, π», then (πΊ βͺ π») minus that edge is an indecomposable geometric graph. (Przeslawski and Yost, In preparation), E.g. πΉπ·π 1 , π·πΉπ 1 , πΈπΈ23 , πΈπΉπ 3 , πΉπΈπ 3 . Note that 2 is a special case of 4. There are a few more rules for harder cases, e.g. in Kallay, but they are not necessary for our purpose. The literature contains very few conditions which imply decomposability. The following is practically the only one. ο· If there is one face with every vertex of degree 3, and it has at least 2 vertices outside of that face, then itβs decomposable. (Shephard, 1963) Theorem. Let π be a polyhedron with the same number of vertices and facets (> 4). Suppose the graph of π contains the complete graph on 4 vertices. Then π and its dual are both decomposable. Proof. If graph of π contains πΎ4 then π is the result of stacking a tetrahedron onto a polyhedron π [note, so when you stack it on, youβre adding one extra vertex and youβre adding three extra faces and youβre losing one underneath when you βglueβ the two together] So it changes in regards to π β 1 vertex and πΉ β 2 faces. Since π β 1 > πΉ β 2, Smilansky tells us that π is decomposable. Let π£ be the βextraβ vertex. Theorem 5.1 from Smilansky (1987) Q is decomposable. Then there exists a local similarity π on π which is not a similarity. A function defined on the vertices of Q but not a similarity. Then if we extend π, the restriction of π to the π‘πππππππ and then the three edges connect to the intersection of π and the π‘ππ‘ππππππππ. A local similarity restricted to a triangle which is indecomposable must be a similarity. And since a similarity is defined as something with a domain of all of π 3 so it must be the restriction of a similarity π. We can define a local similarity π on π by π π€ = π π€ for all π€ β π π π£ = π(π£) and π is not a similarity. Hence π is decomposable. 7 In polyhedron π , which is the dual of π, π£ corresponds to a triangular face πΉ. π£ belongs to 3 trianglular faces in π. Every vertex corresponds to a face in the dual. These three triangular faces correspond to vertices of degree 3 in π . So in π , πΉ is enclosed by 3 vertices of degree 3. Which implies π is decomposable. (Shephard, 1963) ππΈπ· Interestingly, for every polyhedron π we have determined so far, the following statements are true. 1. π is combinatorially decomposable if and only if the dual of π is combinatorially decomposable. 2. π is combinatorially indecomposable if and only if the dual of π is combinatorially indecomposable. 3. π is conditionally decomposable (ambiguous) if and only if the dual of π is conditionally decomposable. This is known to be true for all 54 combinatorial types of polyhedra with π = πΉ up to 8 (Yost, 2007). So far (27th Feb) we have determined the decomposability or otherwise of 291 of the 296 types with π = πΉ = 9, and no counterexample has appeared. A long term project would be to see whether or not this is able to be proven. This motivated the preceding theorem, which is a special case. Establishing conditional decomposability (ambiguity) of some polyhedra is a little tricky as you need to find two realisations of polyhedron, one decomposable and one indecomposable. The following proves this for πΉπΈ1 . Consider the triangle π with vertices π (0,0,0), π΄ (0,1,0) and π΅ (0,1,1), and the quadrilateral π with vertices π (0,0,0), πΆ (2,0,0), π· (2,0,1) and πΈ (1,0, β1). Then π = π + πis the polyhedron with vertices π, π΄, π΅, πΆ, π·, πΈ, πΉ = π΄ + πΆ (2,1,0), πΊ = π΄ + πΈ (1,1, β1) and π» = π΅ + π· (2,1,2). It is not hard to see that π΄ + π· = π΅ + πΆ (2,1,1) is an interior point of π, while π» = π΅ + π· (1,1,0) is midpoint of the edge π΄πΉ. The combinatorial structure of π is πΉπΈ1 . The quadrilateral faces are ππ΅π»π·, πΆπ·π»πΉ, πΆπΈπΊπΉ, ππ΄πΈπΊ and π΄π΅πΉπ». The triangular faces are ππ΄π΅, ππΆπ·,ππΆπΈ and π΄πΉπΊ. 8 To see an indecomposable realisation, replace A by the nearby point (β0.1,1,0.1). The new π΄ still lies in the planes with equations π₯ + π§ = 0 and π¦ = 1. This means that ππ΄πΈπΊ is still coplanar, hence a quadrilateral face of the new π, and the same applies to π΄π΅πΉπ». So the combinatorial structure of π has not changed. However the 4-cycle ππ΄πΉπΆ is no longer coplanar (π, πΉ and πΆ are in the plane π§ = 0), and it touches every face. ππΈπ· The ambiguity of other polyhedra listed in the table have been proved by similar arguments. 4. Results The table explains how to classify each diagram. The meaning of the columns is as follows: (1) Order Number. This number refers to the number of the diagram. Simply its order on the list, no quantitative meaning (2) Notation. I preserved Kirkmanβs (1878) notation for the asymmetrical polyhedra. The first letter corresponds to the number of faces and the second letter refers the degrees of the vertices, and since there are 2 or more polyhedra within most groups, they have been numbered. Kirkman may have had some logic behind the notation for his symmetrical polyhedra, but there is no reason to keep symmetrical and asymmetrical separate, so I have combined them. For example, his polyhedron πΎ is now πΉπ·π 1 . The π meaning it has symmetry (3) Faces. The digit on the right is the number of triangular faces, the next digit is the number of quadrilateral faces, the next digit is the number of pentagons, the next is the number of hexagons, the next is the number of heptagons, and the next is the number of octagons. For example, if the number is 10017, thereβs 1 heptagon, 1 quadrilateral, and 7 triangles. (4) Vertices. Similar to the face notation, but instead it relates to the degrees of the vertices. For example, if the number is 216, it has 2 vertices of degree 5, 1 of degree 4 and 6 of degree 3. (5) Symmetry. The number in this column represents how many symmetries the polyhedron has. If there is nothing in the table cell, the polyhedron has no symmetry and therefore is asymmetrical. (6) Dual. The Notation in this column refers to the Notation of the dual of the polyhedron in each particular line. If it says βSelfβ then the polyhedron is selfdual. (7) Decomposability. This column states whether the polyhedron is decomposable, indecomposable, or ambiguous. (8) Kirkman. The notation in this column corresponds to Kirkmanβs (1878) paper titled βThe Enumeration and Construction of the 9-Acral 9-Edraβ. The double asterisk ** indicates the errors found and corrected in Kirkmanβs work. (9) JucoviΔ. The notation in this column relates to Ernest JucoviΔβs (1962) paper titled βΠ‘Π°ΠΌΠΎΡΠΎΠΏΡΡΠΆΠ΅Π½Π½ΡΠ΅ ΠβΠΏΠΎΠ»ΠΈΡΠ΄ΡΡβ (Roughly translated to Self-Dual KPolyhedra). In his paper, he uses the same notation for different polyhedra so I added subscripts in order of appearance in his paper. 9 The lines highlighted in orange are the polyhedra which havenβt been classified regarding their decomposability yet. The rest of the results will be submitted in a paper co-authored by Dr David Yost once we finish determining decomposability. 5. The Diagrams: The diagrams are in the same order as the table. Starting with π½π½π , the polyhedron with one octagon and eight triangles, e.g. the octagonal pyramid. Apart from the background face, the remaining faces are colour coded for easy identification. The pentagons are blue, the quadrilaterals are green and the triangles are maroon. 10 Number Notation Faces Vertices Symmetry One octagon& eight triangles 1 100008 100008 16 π½π½π One heptagon, one quadrilateral & seven triangles 2 10017 10017 π΄π΄ 3 10017 1026 π΄πΆ 4 10017 216 2 π΄π·π One hexagon, one pentagon & seven triangles 5 1107 1107 π΅π΅ 6 1107 1026 2 π΅πΆπ 7 1107 216 π΅π· 8 1107 135 π΅πΈ1 9 1107 135 π΅πΈ2 10 1107 54 2 π΅πΉπ One hexagon, two quadrilaterals& six triangles 11 1026 10017 πΆπ΄ 12 1026 1107 2 πΆπ΅π 13 1026 1026 2 πΆπΆπ 1 14 1026 1026 2 πΆπΆπ 2 15 1026 1026 2 πΆπΆπ 3 16 1026 1026 2 πΆπΆπ 4 17 1026 1026 πΆπΆ1 18 1026 1026 πΆπΆ2 19 1026 1026 πΆπΆ3 20 1026 1026 πΆπΆ4 21 1026 1026 πΆπΆ5 22 1026 1026 πΆπΆ6 23 1026 1026 πΆπΆ7 24 1026 1026 πΆπΆ8 25 1026 216 2 πΆπ·π 26 1026 216 πΆπ·1 27 1026 216 πΆπ·2 28 1026 216 πΆπ·3 29 1026 135 2 πΆπΈπ 1 30 1026 135 2 πΆπΈπ 2 31 1026 135 2 πΆπΈπ 3 32 1026 135 2 πΆπΈπ 4 33 1026 135 πΆπΈ1 34 1026 135 πΆπΈ2 35 1026 135 πΆπΈ3 36 1026 135 πΆπΈ4 37 1026 135 πΆπΈ5 11 Dual Decomposability Kirkman JucoviΔ Self Indecomposable πΆ (319; 1) Self πΆπ΄ π·π΄π Indecomposable Indecomposable Indecomposable π΄π΄ π΄πΆ πΏ1 (325; 42)1 Self πΆπ΅π π·π΅ πΈπ΅2 πΈπ΅1 πΉπ΅π Indecomposable Indecomposable Indecomposable Indecomposable Indecomposable Indecomposable π΅π΅ πΏ2 π΅π· π΅πΈ1 π΅πΈ2 (329; 87) π΄πΆ π΅πΆπ Self Self πΆπΆπ 4 πΆπΆπ 3 πΆπΆ5 Self Self Self πΆπΆ1 Self Self Self π·πΆπ π·πΆ3 π·πΆ2 π·πΆ1 πΈπΆπ 1 πΈπΆπ 2 πΈπΆπ 3 πΈπΆπ 4 πΈπΆ1 πΈπΆ2 πΈπΆ3 πΈπΆ4 πΈπΆ5 Indecomposable Indecomposable Indecomposable Decomposable Indecomposable Indecomposable Indecomposable Indecomposable Indecomposable Indecomposable Indecomposable Indecomposable Decomposable Indecomposable Indecomposable Indecomposable Indecomposable Indecomposable Indecomposable Decomposable Decomposable Indecomposable Indecomposable Indecomposable Indecomposable Indecomposable Indecomposable πΆπ΄ πΏβ1 2 π· π2 πΏ4 πΏβ1 4 πΆπΆ1 πΆπΆ2 ** πΆπΆ3 πΆπΆ4 πΆπΆ5 πΆπΆ6 πΆπΆ7 πΆπΆ8 π11 πΆπ·1 πΆπ·2 πΆπ·3 πΏ3 πΏβ1 5 π1 π3 π7 πΆπΈ1 πΆπΈ2 πΆπΈ3 πΆπΈ4 πΆπΈ5 (325; 42)2 (330; 35)2 (319; 2) (330; 33)2 (325; 34) (325; 31) (330; 35)2 (325; 29) 38 1026 135 πΆπΈ6 39 1026 135 πΆπΈ7 40 1026 135 πΆπΈ8 41 1026 135 πΆπΈ9 42 1026 135 πΆπΈ10 43 1026 135 πΆπΈ11 44 1026 135 πΆπΈ12 45 1026 135 πΆπΈ13 46 1026 54 2 πΆπΉπ 1 47 1026 54 2 πΆπΉπ 2 48 1026 54 πΆπΉ Two pentagons, one quadrilateral & six triangles 49 216 10017 2 π·π΄π 50 216 1107 π·π΅ 51 216 1026 2 π·πΆπ 52 216 1026 π·πΆ1 53 216 1026 π·πΆ2 54 216 1026 π·πΆ3 55 216 216 2 π·π·π 56 216 216 π·π·1 57 216 216 π·π·2 58 216 216 π·π·3 59 216 216 π·π·4 60 216 216 π·π·5 61 216 216 π·π·6 62 216 216 π·π·7 63 216 216 π·π·8 64 216 216 π·π·9 65 216 216 π·π·10 66 216 135 2 π·πΈπ 67 216 135 π·πΈ1 68 216 135 π·πΈ2 69 216 135 π·πΈ3 70 216 135 π·πΈ4 71 216 135 π·πΈ5 72 216 135 π·πΈ6 73 216 135 π·πΈ7 74 216 135 π·πΈ8 75 216 135 π·πΈ9 76 216 135 π·πΈ10 77 216 135 π·πΈ11 78 216 135 π·πΈ12 12 EC_6 EC_7 EC_8 EC_9 EC_10 EC_11 EC_12 EC_13 FCs_1 FCs_2 FC Indecomposable Indecomposable Indecomposable Indecomposable Decomposable Decomposable Indecomposable Indecomposable Indecomposable Decomposable Indecomposable πΆπΈ6 πΆπΈ7 πΆπΈ8 πΆπΈ9 πΆπΈ10 πΆπΈ11 πΆπΈ12 πΆπΈ13 π΄π·π π΅π· πΆπ·π πΆπ·3 πΆπ·2 πΆπ·1 Self Self π·π·10 π·π·8 Self Self Self Self π·π·3 Self π·π·2 πΈπ·π πΈπ·1 πΈπ·2 πΈπ·3 πΈπ·4 πΈπ·5 πΈπ·6 πΈπ·7 πΈπ·8 πΈπ·9 πΈπ·10 πΈπ·11 πΈπ·12 Indecomposable Indecomposable Indecomposable Indecomposable Indecomposable Indecomposable Indecomposable Indecomposable Indecomposable Indecomposable Indecomposable Indecomposable Decomposable Decomposable Indecomposable Indecomposable Indecomposable Decomposable Indecomposable Indecomposable Indecomposable Indecomposable Indecomposable Indecomposable Indecomposable Indecomposable Indecomposable Indecomposable Decomposable Indecomposable πΏβ1 1 π·π΅ π10 π·πΆ1 π·πΆ2 π·πΆ3 πΌ π1β1 πΆπΉ π» π·π·1 π·π·2 π·π·3 π·π·4 π·π·5 π·π·6 π·π·7 π·π·8 π·π·9 π·π·10 π11 π·πΈ1 π·πΈ2 π·πΈ3 π·πΈ4 π·πΈ5 π·πΈ6 π·πΈ7 π·πΈ8 π·πΈ9 π·πΈ10 π·πΈ11 π·πΈ12 (330; 33)1 (324; 78) (327; 77) (330; 43)1 (330; 35)4 (330; 35)1 (327; 75) 79 216 135 π·πΈ13 80 216 135 π·πΈ14 81 216 135 π·πΈ15 82 216 135 π·πΈ16 83 216 135 π·πΈ17 84 216 135 π·πΈ18 85 216 135 π·πΈ19 86 216 135 π·πΈ20 87 216 135 π·πΈ21 88 216 54 2 π·πΉπ 1 89 216 54 2 π·πΉπ 2 90 216 54 2 π·πΉπ 3 91 216 54 π·πΉ1 92 216 54 π·πΉ2 93 216 54 π·πΉ3 94 216 54 π·πΉ4 95 216 54 π·πΉ5 96 216 54 π·πΉ6 97 216 54 π·πΉ7 98 216 54 π·πΉ8 One pentagon, three quadrilaterals & five triangles 99 135 1107 πΈπ΅1 100 135 1107 πΈπ΅2 101 135 1026 2 πΈπΆπ 1 102 135 1026 2 πΈπΆπ 2 103 135 1026 2 πΈπΆπ 3 104 135 1026 2 πΈπΆπ 4 105 135 1026 πΈπΆ1 106 135 1026 πΈπΆ2 107 135 1026 πΈπΆ3 108 135 1026 πΈπΆ4 109 135 1026 πΈπΆ5 110 135 1026 πΈπΆ6 111 135 1026 πΈπΆ7 112 135 1026 πΈπΆ8 113 135 1026 πΈπΆ9 114 135 1026 πΈπΆ10 115 135 1026 πΈπΆ11 116 135 1026 πΈπΆ12 117 135 1026 πΈπΆ13 118 135 216 2 πΈπ·π 13 πΈπ·13 πΈπ·14 πΈπ·15 πΈπ·16 πΈπ·17 πΈπ·18 πΈπ·19 πΈπ·20 πΈπ·21 πΉπ·π 1 πΉπ·π 2 πΉπ·π 3 πΉπ·1 πΉπ·2 πΉπ·3 πΉπ·4 πΉπ·6 πΉπ·5 πΉπ·7 πΉπ·8 Indecomposable Indecomposable Indecomposable Decomposable Decomposable Decomposable Indecomposable Indecomposable Indecomposable Indecomposable Indecomposable Decomposable Indecomposable Indecomposable Indecomposable Indecomposable Decomposable Decomposable Indecomposable Indecomposable π·πΈ13 π·πΈ14 π·πΈ15 π·πΈ16 π·πΈ17 π·πΈ18 π·πΈ19 π·πΈ20 π·πΈ21 π΅πΈ2 π΅πΈ1 πΆπΈπ 1 πΆπΈπ 2 πΆπΈπ 3 πΆπΈπ 4 πΆπΈ1 πΆπΈ2 πΆπΈ3 πΆπΈ4 πΆπΈ5 πΆπΈ6 πΆπΈ7 πΆπΈ8 πΆπΈ9 πΆπΈ10 πΆπΈ11 πΆπΈ12 πΆπΈ13 π·πΈπ Indecomposable Indecomposable Indecomposable Decomposable Decomposable Indecomposable Indecomposable Indecomposable Indecomposable Indecomposable Indecomposable Indecomposable Indecomposable Indecomposable Indecomposable Decomposable Decomposable Indecomposable Indecomposable Decomposable πΈπ΅1 πΈπ΅2 πΊ πΏ6 π2β1 π·πΉ1 π·πΉ2 π·πΉ3 π·πΉ4 π·πΉ5 π·πΉ6 π·πΉ7 π·πΉ8 πΏ5 π4 π8 π5 πΈπΆ1 πΈπΆ2 πΈπΆ3 πΈπΆ4 πΈπΆ5 πΈπΆ6 πΈπΆ7 πΈπΆ8 πΈπΆ9 πΈπΆ10 πΈπΆ11 πΈπΆ12 πΈπΆ13 π6 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 πΈπ·1 πΈπ·2 πΈπ·3 πΈπ·4 πΈπ·5 πΈπ·6 πΈπ·7 πΈπ·8 πΈπ·9 πΈπ·10 πΈπ·11 πΈπ·12 πΈπ·13 πΈπ·14 πΈπ·15 πΈπ·16 πΈπ·17 πΈπ·18 πΈπ·19 πΈπ·20 πΈπ·21 πΈπΈπ 1 πΈπΈπ 2 πΈπΈπ 3 πΈπΈπ 4 πΈπΈπ 5 πΈπΈπ 6 πΈπΈπ 7 πΈπΈπ 8 πΈπΈπ 9 πΈπΈ1 πΈπΈ2 πΈπΈ3 πΈπΈ4 πΈπΈ5 πΈπΈ6 πΈπΈ7 πΈπΈ8 πΈπΈ9 πΈπΈ10 πΈπΈ11 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 216 216 216 216 216 216 216 216 216 216 216 216 216 216 216 216 216 216 216 216 216 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 π·πΈ1 π·πΈ2 π·πΈ3 π·πΈ4 π·πΈ5 π·πΈ6 π·πΈ7 π·πΈ8 π·πΈ9 π·πΈ10 π·πΈ11 π·πΈ12 π·πΈ13 π·πΈ14 π·πΈ15 π·πΈ16 π·πΈ17 π·πΈ18 π·πΈ19 π·πΈ20 π·πΈ21 Self Self πΈπΈπ 6 Self πΈπΈπ 9 πΈπΈπ 3 πΈπΈπ 8 πΈπΈπ 7 πΈπΈπ 5 πΈπΈ21 πΈπΈ24 Self πΈπΈ27 πΈπΈ12 Self πΈπΈ15 πΈπΈ14 πΈπΈ30 Self Self 2 2 2 2 2 2 2 2 2 14 Indecomposable Indecomposable Indecomposable Indecomposable Indecomposable Indecomposable Indecomposable Indecomposable Indecomposable Indecomposable Decomposable Indecomposable Indecomposable Indecomposable Indecomposable Decomposable Decomposable Decomposable Indecomposable Indecomposable Indecomposable Decomposable Decomposable Indecomposable Indecomposable Decomposable Indecomposable Indecomposable Indecomposable Decomposable Indecomposable Ambiguous Ambiguous Indecomposable Indecomposable Indecomposable Indecomposable Indecomposable Indecomposable Indecomposable Indecomposable πΈπ·1 πΈπ·2 πΈπ·3 πΈπ·4 πΈπ·5 πΈπ·6 πΈπ·7 πΈπ·8 πΈπ·9 πΈπ·10 πΈπ·11 ** πΈπ·12 πΈπ·13 πΈπ·14 πΈπ·15 πΈπ·16 πΈπ·17 πΈπ·18 πΈπ·19 πΈπ·20 πΈπ·21 π5 π9 π1 π2 π3 π4 π6 π14 π15 πΈπΈ1 ** πΈπΈ2 πΈπΈ3 πΈπΈ4 πΈπΈ5 πΈπΈ6 πΈπΈ7 πΈπΈ8 πΈπΈ9 πΈπΈ10 πΈπΈ11 (332; 7) (331; 63) (330; 41) (332; 19) (329; 81) (332; 13)1 (330; 29) 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 πΈπΈ12 πΈπΈ13 πΈπΈ14 πΈπΈ15 πΈπΈ16 πΈπΈ17 πΈπΈ18 πΈπΈ19 πΈπΈ20 πΈπΈ21 πΈπΈ22 πΈπΈ23 πΈπΈ24 πΈπΈ25 πΈπΈ26 πΈπΈ27 πΈπΈ28 πΈπΈ29 πΈπΈ30 πΈπΈ31 πΈπΈ32 πΈπΈ33 πΈπΈ34 πΈπΈ35 πΈπΈ36 πΈπΈ37 πΈπΈ38 πΈπΈ39 πΈπΈ40 πΈπΈ41 πΈπΈ42 πΈπΈ43 πΈπΈ44 πΈπΈ45 πΈπΈ46 πΈπΈ47 πΈπΈ48 πΈπΈ49 πΈπΈ50 πΈπΈ51 πΈπΈ52 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 πΈπΈ5 πΈπΈ28 πΈπΈ8 πΈπΈ7 πΈπΈ31 Self Self πΈπΈ46 πΈπΈ22 πΈπΈ1 πΈπΈ20 Self πΈπΈ2 Self Self πΈπΈ4 πΈπΈ13 Self πΈπΈ9 πΈπΈ16 πΈπΈ45 πΈπΈ63 Self Self πΈπΈ38 πΈπΈ42 πΈπΈ36 πΈπΈ65 πΈπΈ48 Self πΈπΈ37 πΈπΈ44 πΈπΈ43 πΈπΈ32 πΈπΈ19 Self πΈπΈ40 πΈπΈ62 Self πΈπΈ54 πΈπΈ60 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 15 Indecomposable Indecomposable Indecomposable Indecomposable Indecomposable Indecomposable Indecomposable Indecomposable Indecomposable Indecomposable Indecomposable Indecomposable Ambiguous Indecomposable Indecomposable Indecomposable Indecomposable Indecomposable Indecomposable Indecomposable Indecomposable Indecomposable Indecomposable Decomposable Indecomposable Indecomposable Indecomposable Decomposable Decomposable Indecomposable Indecomposable Indecomposable Indecomposable Indecomposable Indecomposable Decomposable Decomposable Decomposable Indecomposable Indecomposable Indecomposable πΈπΈ12 πΈπΈ13 πΈπΈ14 πΈπΈ15 πΈπΈ16 πΈπΈ17 πΈπΈ18 πΈπΈ19 πΈπΈ20 πΈπΈ21 πΈπΈ22 ** πΈπΈ23 πΈπΈ24 πΈπΈ25 πΈπΈ26 πΈπΈ27 πΈπΈ28 πΈπΈ29 πΈπΈ30 πΈπΈ31 πΈπΈ32 πΈπΈ33 ** πΈπΈ34 πΈπΈ35 πΈπΈ36 πΈπΈ37 ** πΈπΈ38 πΈπΈ39 πΈπΈ40 πΈπΈ41 πΈπΈ42 πΈπΈ43 πΈπΈ44 πΈπΈ45 πΈπΈ46 πΈπΈ47 πΈπΈ48 πΈπΈ49 πΈπΈ50 πΈπΈ51 πΈπΈ52 (331; 63) (324; 1) (332; 11)1 (331; 54) (331; 55)2 (331; 55)1 (326; 72)1 (326; 72)2 (329; 16) (330; 24) (325; 33) 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 πΈπΈ53 πΈπΈ54 πΈπΈ55 πΈπΈ56 πΈπΈ57 πΈπΈ58 πΈπΈ59 πΈπΈ60 πΈπΈ61 πΈπΈ62 πΈπΈ63 πΈπΈ64 πΈπΈ65 πΈπΈ66 πΈπΈ67 πΈπΉπ 1 πΈπΉπ 2 πΈπΉπ 3 πΈπΉπ 4 πΈπΉ1 πΈπΉ2 πΈπΉ3 πΈπΉ4 πΈπΉ5 πΈπΉ6 πΈπΉ7 πΈπΉ8 πΈπΉ9 πΈπΉ10 πΈπΉ11 πΈπΉ12 πΈπΉ13 πΈπΉ14 πΈπΉ15 πΈπΉ16 πΈπΉ17 πΈπΉ18 πΈπΉ19 πΈπΉ20 πΈπΉ21 πΈπΉ22 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 πΈπΈ61 πΈπΈ51 Self Self πΈπΈ58 πΈπΈ57 Self πΈπΈ52 πΈπΈ53 πΈπΈ49 πΈπΈ33 Self πΈπΈ39 Self Self πΉπΈπ 1 πΉπΈπ 2 πΉπΈπ 3 πΉπΈπ 4 πΉπΈ1 πΉπΈ2 πΉπΈ3 πΉπΈ4 πΉπΈ5 πΉπΈ6 πΉπΈ7 πΉπΈ8 πΉπΈ9 πΉπΈ10 πΉπΈ11 πΉπΈ12 πΉπΈ13 πΉπΈ15 πΉπΈ16 πΉπΈ17 πΉπΈ18 πΉπΈ20 πΉπΈ21 πΉπΈ22 πΉπΈ19 πΉπΈ14 2 2 2 2 16 Indecomposable Indecomposable Indecomposable Indecomposable Decomposable Decomposable Indecomposable Indecomposable Indecomposable Decomposable Indecomposable Decomposable Decomposable Indecomposable Indecomposable Ambiguous Indecomposable Indecomposable Indecomposable Ambiguous Indecomposable Indecomposable Indecomposable Indecomposable Indecomposable Indecomposable Indecomposable Indecomposable Indecomposable Indecomposable Indecomposable Indecomposable Indecomposable Indecomposable Indecomposable Decomposable Indecomposable Indecomposable Indecomposable Decomposable Indecomposable πΈπΈ53 πΈπΈ54 πΈπΈ55 πΈπΈ56 πΈπΈ57 πΈπΈ58 πΈπΈ59 πΈπΈ60 πΈπΈ61 πΈπΈ62 πΈπΈ63 πΈπΈ64 πΈπΈ65 πΈπΈ66 πΈπΈ67 π7 π12 π13 πΏ7 πΈπΉ1 πΈπΉ2 πΈπΉ3 πΈπΉ4 πΈπΉ5 πΈπΉ6 πΈπΉ7 πΈπΉ8 ** πΈπΉ9 πΈπΉ10 πΈπΉ11 πΈπΉ12 πΈπΉ13 πΈπΉ14 πΈπΉ15 πΈπΉ16 πΈπΉ17 πΈπΉ18 πΈπΉ19 πΈπΉ20 πΈπΉ21 πΈπΉ22 (329; 19) (330; 21) (330; 43)2 (330; 31) (332; 14) (329; 20) Five quadrilaterals & four triangles 242 54 1107 πΉπ΅π 243 54 1026 πΉπΆπ 1 244 54 1026 πΉπΆπ 2 245 54 1026 πΉπΆ 246 54 216 πΉπ·π 1 247 54 216 πΉπ·π 2 248 54 216 πΉπ·π 3 249 54 216 πΉπ·1 250 54 216 πΉπ·2 251 54 216 πΉπ·3 252 54 216 πΉπ·4 253 54 216 πΉπ·5 254 54 216 πΉπ·6 255 54 216 πΉπ·7 256 54 216 πΉπ·8 257 54 135 πΉπΈπ 1 258 54 135 πΉπΈπ 2 259 54 135 πΉπΈπ 3 260 54 135 πΉπΈπ 4 261 54 135 πΉπΈ1 262 54 135 πΉπΈ2 263 54 135 πΉπΈ3 264 54 135 πΉπΈ4 265 54 135 πΉπΈ5 266 54 135 πΉπΈ6 267 54 135 πΉπΈ7 268 54 135 πΉπΈ8 269 54 135 πΉπΈ9 270 54 135 πΉπΈ10 271 54 135 πΉπΈ11 272 54 135 πΉπΈ12 273 54 135 πΉπΈ13 274 54 135 πΉπΈ14 275 54 135 πΉπΈ15 276 54 135 πΉπΈ16 277 54 135 πΉπΈ17 278 54 135 πΉπΈ18 279 54 135 πΉπΈ19 280 54 135 πΉπΈ20 281 54 135 πΉπΈ21 π΅πΉπ πΆπΉπ 1 πΆπΉπ 2 πΆπΉ π·πΉπ 1 π·πΉπ 2 π·πΉπ 3 π·πΉ1 π·πΉ2 π·πΉ3 π·πΉ4 π·πΉ6 π·πΉ5 π·πΉ7 π·πΉ8 πΈπΉπ 1 πΈπΉπ 2 πΈπΉπ 3 πΈπΉπ 4 πΈπΉ1 πΈπΉ2 πΈπΉ3 πΈπΉ4 πΈπΉ5 πΈπΉ6 πΈπΉ7 πΈπΉ8 πΈπΉ9 πΈπΉ10 πΈπΉ11 πΈπΉ12 πΈπΉ13 πΈπΉ22 πΈπΉ14 πΈπΉ15 πΈπΉ16 πΈπΉ17 πΈπΉ21 πΈπΉ18 πΈπΉ19 2 2 2 2 2 2 2 2 2 2 17 Indecomposable Indecomposable Decomposable Indecomposable Indecomposable Indecomposable Decomposable Indecomposable Indecomposable Indecomposable Indecomposable Decomposable Decomposable Indecomposable Indecomposable πΏβ1 3 πΈ π1 πΉπΆ πΎ πΏβ1 6 π2 πΉπ·1 πΉπ·2 πΉπ·3 πΉπ·4 πΉπ·5 πΉπ·6 πΉπ·7 πΉπ·8 Indecomposable Indecomposable Indecomposable Ambiguous Indecomposable Indecomposable Indecomposable Indecomposable Indecomposable Indecomposable Indecomposable Indecomposable Indecomposable Indecomposable Indecomposable Indecomposable Indecomposable Indecomposable Indecomposable Indecomposable Decomposable Decomposable Indecomposable Indecomposable π10 π8 π9 ** πΏβ1 7 πΉπΈ1 πΉπΈ2 πΉπΈ3 πΉπΈ4 πΉπΈ5 πΉπΈ6 πΉπΈ7 πΉπΈ8 πΉπΈ9 πΉπΈ10 πΉπΈ11 πΉπΈ12 πΉπΈ13 πΉπΈ14 πΉπΈ15 πΉπΈ16 πΉπΈ17 πΉπΈ18 πΉπΈ19 πΉπΈ20 πΉπΈ21 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 πΉπΈ22 πΉπΉπ 1 πΉπΉπ 2 πΉπΉπ 3 πΉπΉπ 4 πΉπΉπ 5 πΉπΉπ 6 πΉπΉπ 7 πΉπΉπ 8 πΉπΉ1 πΉπΉ2 πΉπΉ3 πΉπΉ4 πΉπΉ5 πΉπΉ6 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 135 54 54 54 54 54 54 54 54 54 54 54 54 54 54 πΈπΉ20 Self Self Self πΉπΉπ 8 Self πΉπΉπ 7 πΉπΉπ 6 πΉπΉπ 4 Self πΉπΉ3 πΉπΉ2 Self Self Self 8 8 2 2 2 2 2 2 18 Indecomposable Decomposable Ambiguous Indecomposable Ambiguous Ambiguous Indecomposable Indecomposable Indecomposable Indecomposable Indecomposable πΉπΈ22 π΄ π΅ π½ π1 πΉ π2 π2β1 π1β1 ** πΉπΉ1 πΉπΉ2 πΉπΉ3 πΉπΉ4 πΉπΉ5 πΉπΉ6 (332; 1) (332; 6) (332; 10) (332; 13)2 (329; 2) (331; 60) (331; 57) (332; 20) 19 20 21 22 23 24 25 26 27 Reference List Biggs, N. (1981). T. P. Kirkman, Mathematician. Bulletin of the London Mathematical Society, 13(2), pp.97-120. Briggs, D & Yost, D. In preparation. Britton, D & Dunitz, J.D. (1973). A Complete Catalogue of Polyhedra with Eight or Fewer Vertices. Acta Crystallographica, series A, 29(4), 367-371. Federico, P.J. (1969). Enumeration of polyhedra: The number of 9-hedra. Journal of Combinatorial Theory, 7(2), pp.155-161. Federico, P.J. (1974). Polyhedra with 4 to 8 Faces. Geometriae Dedicata, 3(4), 469481. Gale, D. (1954). Irreducible convex sets. Proceedings of the International Congress of Mathematicians, Amsterdam, 2, 217-218. JucoviΔ, E. (1962). Π‘Π°ΠΌΠΎΡΠΎΠΏΡΡΠΆΠ΅Π½Π½ΡΠ΅ ΠβΠΏΠΎΠ»ΠΈΡΠ΄ΡΡ. Matematicko-fyzikálny Δasopis, 12(1), 1-22. Kallay, M. (1982). Indecomposable Polytopes. Israel Journal of Mathematics, 41(3), 235-243. Kirkman, T.P. (1863). Applications of the Theory of the Polyedra to the Enumeration and Registration of Results. Philosophical Transactions of the Royal Society of London, 12, 341-380. Kirkman, T.P. (1878). The Enumeration and Construction of the 9-Acral 9-Edra, and on the Construction of Polyedra. Proceedings of the Literary & Philosophical Society of Liverpool, 32, 177-215. Przeslawski, K. and Yost, D. (2008). Decomposability of polytopes. Discrete & Computational Geometry,39, 460-468, Przeslawski, K. and Yost, D. More indecomposable polyhedra, in preparation. Shephard, G.C. (1963). Decomposable Convex Polyhedra. Mathematika: A Journal of Pure and Applied Mathematic, 10(2), 89-95. Smilansky, Z (1987). Decomposability of Polytopes and Polyhedra. Geometriae Dedicata, 24(1), 29-49. Voytekhovsky, Y. (2014). E. S. Fedorovβs algorithm of the generation of the combinatorial diversity of convex polyhedra: The latest results and applications. Journal of Structural Chemistry, 55(7), pp.1293-1307. Yost, D. (2007). Some Indecomposable Polyhedra. Optimization, 56(5), 715-724. Ziegler, G.M. (1995). Lectures on Polytopes, Graduate Texts in Mathematics, Vol. 152, Springer-Verlag, New York, 1995. 28
© Copyright 2026 Paperzz