Practice Problems for Differentiation Test Math 122(N. Mackey) Reminder: No calculators. No partial credit. Advice: Do all the intermediate steps. Practise, practise, practise! In each case, find an expression for the derivative. 11 1. y = √ 2 2 x −x+9 First, rewrite y in preparation for differentiation. 11 11 = (x2 − x + 9)−1/2 y= √ 2 2 2 x −x+9 Now differentiate. −3/2 11 −1 2 dy = (x2 − x + 9)0 x −x+9 dx 2 2 −3/2 −11 2 = (2x + 1) x −x+9 4 √ 2. y = w3 w −1 Using the quotient rule, (w3 − 1)(w1/2 )0 − (w3 − 1)0 w1/2 (w3 − 1)2 (w3 − 1) 12 w−1/2 − 3w2 w1/2 = (w3 − 1)2 y0 = Multiply numerator and denominator by y0 = √ 3. y = w 3 w −1 √ w. Use laws of exponents. This yields −(5w3 + 1) √ 2 w(w3 − 1)2 !7 Using logarithmic differentiation, we first find ln y w1/2 ln y = 7 ln w3 − 1 1 3 = 7 ln w − ln(w − 1) 2 ! (1) Now differentiate both sides. 1 0 1 3w2 ·y = 7 − 3 y 2w w − 1 # √ !7 " 1 3w2 w 0 y = 7 − w3 − 1 2w w3 − 1 " # 2 4. y = ex + xe + e 2 y 0 = ex · 2x + e · xe−1 + 0 2 = 2x ex + exe−1 θ2 + 1 5. y = √ 3 θ2 + 3 Taking natural log of both sides, ln y = ln(θ2 + 1) − 1 ln(θ2 + 3) 3 Differentiating 1 0 2θ 2θ ·y = 2 − 2 y θ + 1 3(θ + 3) " # 2θ(θ2 + 1) 1 1 0 y = √ − 3 θ2 + 3 θ2 + 1 3(θ2 + 3) −1 6. y = etan x (x2 + 1) Using the product rule −1 y 0 = (etan −1 x 0 −1 x −1 x ) (x2 + 1) + etan x (x2 + 1)0 −1 · (tan−1 x)0 · (x2 + 1) + etan x (2x) 1 −1 −1 · (x2 + 1) + 2x etan x = etan x · 2 1+x −1 tan−1 x = e + etan x (2x) = etan = etan (1 + 2x) 7. y = cos3 (5x2 ) First rewrite y in preparation for differentiation y = cos(5x2 ) 3 2 · (cos(5x2 ))0 2 · (− sin(5x2 )) · (5x2 )0 y 0 = 3 cos(5x2 ) = 3 cos(5x2 ) = −3 cos(5x2 ) 2 · sin(5x2 ) · 10x = −30x cos2 (5x2 ) sin(5x2 ) 2 8. sin(xy) = x2 − y Use implicit differentiation. cos(xy) · (xy)0 cos(xy) · (y + xy 0 ) cos(xy) · y + cos(xy) · (xy 0 ) y 0 [x cos(xy) + 1] y0 2x − y 0 2x − y 0 2x − y 0 2x − y cos(xy) 2x − y cos(xy) = x cos(xy) + 1 = = = = 9. y = e2x sec(2x) tan(2x) Use (f gh)0 = f 0 gh + f g 0 h + f gh0 . Here, f 0 = e2x · (2x)0 = 2e2x g 0 = (sec(2x))0 = sec(2x) tan(2x) · (2x)0 = 2 sec(2x) tan(2x) h0 = (tan(2x))0 = sec2 (2x) · (2x)0 = 2 sec2 (2x) Thus, y 0 = (e2x )0 sec(2x) tan(2x) + e2x (sec(2x))0 tan(2x) + e2x sec(2x) (tan(2x))0 = 2e2x sec(2x) tan(2x) + e2x · 2 sec(2x) tan(2x) · tan(2x) + e2x sec(2x) · 2 sec2 (2x) h = 2e2x sec(2x) tan(2x) + tan2 (2x) + sec2 (2x) i 10. x2 (x − y)2 = x2 − y 2 Use implicit differentiation. The product rule applies on the LHS. 2x · (x − y)2 + x2 · 2(x − y) · (x − y)0 = 2x − 2y · y 0 2x · (x − y)2 + x2 · 2(x − y) · (1 − y 0 ) = 2x − 2y · y 0 Dividing both sides by 2, x(x − y)2 + x2 (x − y) · (1 − y 0 ) = x − yy 0 Keep the goal in mind: we want terms involving y 0 on the LHS, all others should go the the RHS. Use this to guide the simplification. Don’t madly multiply out everything in sight. yy 0 − x2 (x − y)y 0 = x − x(x − y)2 − x2 (x − y) h i y 0 y − x2 (x − y) h i = x 1 − (x − y)2 − x(x − y) y0 = x [1 − (x − y)2 − x(x − y)] y − x2 (x − y) 3 11. y = v u 2 u (x 5 ln t + 1)13 (2 − x3 )20 Use properties of natural log to simplify the RHS. y = i 1h 13 ln(x2 + 1) − 20 ln(2 − x3 ) 5 Now differentiate, 1 1 1 · 2x − 20 · 13 · 2 · (−3x2 ) 5 x +1 2 − x3 26x 12x2 = + 5(x2 + 1) 2 − x3 y0 = 12. y = v u u x(x + 2)3 3 t (1 − x2 )7 Take natural log of both sides, so we can exploit properties of log. ln y = i 1h ln x + 3 ln(x + 2) − 7 ln(1 − x2 ) 3 Now differentiate both sides. 1 1 3 1 1 0 2 0 ·y = + − 7 · (1 − x ) y 3 x x+2 1 − x2 3 14x 1 1 + + = 3 x x+2 1 − x2 Hence, v y0 13. y = √ x ex 2 −1 u 3 14x 1u x(x + 2)3 1 3 t + + = 3 (1 − x2 )7 x x+2 1 − x2 sin−1 (2x) Use (f gh)0 = f 0 gh + f g 0 h + f gh0 . Here 1 1 f 0 = (x1/2 )0 = x−1/2 = √ 2 2 x g 0 = ex h0 2 −1 2 · (x2 − 1)0 = 2xex −1 1 2 = q · (2x)0 = √ 1 − 4x2 1 − (2x)2 Thus √ √ 1 2 2 2 2 √ ex −1 sin−1 (2x) + x 2xex −1 sin−1 (2x) + x ex −1 √ 2 x 1 − 4x2 √ 2 2 ex −1 2 x ex −1 2 √ sin−1 (2x) + 2x3/2 ex −1 sin−1 (2x) + √ = 2 x 1 − 4x2 y0 = 4 t3 + 5 14. y = √ t t A little preliminary simplification has a sweet payoff: 3 t3 + 5 t3 5 = + 3/2 = t3− 2 + 5t−3/2 = t3/2 + 5t−3/2 3/2 3/2 t t t Differentiation is now a breeze: √ 3 −5/2 3 t 15 3 1/2 0 t + 5 − t = − y = 2 2 2 2 t5/2 y = 15. y = 5(e2t + e−2t ) 3(e2t − e−2t ) Preliminary simplification can help. Multiply numerator and denominator by e2t 5 (e2t + e−2t ) e2t · · 3 (e2t − e−2t ) e2t 5 (e2t e2t + e−2t e2t ) · = 3 (e2t e2t − e−2t e2t ) 5 e4t + 1 = · 3 e4t − 1 Now differentiate using the quotient rule: y = (e4t − 1) · (e4t + 1)0 − (e4t − 1)0 · (e4t + 1) (e4t − 1)2 (e4t − 1) · e4t · (4t)0 − e4t (4t)0 · (e4t + 1) · (e4t − 1)2 4e4t [(e4t − 1) − (e4t + 1)] · (e4t − 1)2 4e4t (−2) · 4t (e − 1)2 −40e4t = 3(e4t − 1)2 5 3 5 = 3 5 = 3 5 = 3 y0 = · 16. tan(x3 y 2 ) = 1 Use implicit differentiation. sec2 (x3 y 2 ) · (x3 y 2 )0 = 0 sec2 (x3 y 2 ) · (3x2 · y 2 + x3 · 2yy 0 ) = 0 2x3 yy 0 · sec2 (x3 y 2 ) = −3x2 y 2 · sec2 (x3 y 2 ) −3y −3x2 y 2 · sec2 (x3 y 2 ) = y0 = 2x3 y · sec2 (x3 y 2 ) 2x Last Updated: Monday 26th October, 2015, 18:55. 5
© Copyright 2026 Paperzz