sec 42A intro to degree and radian measure.notebook October 27, 2016 Angles and Their Measure Te rm ina l S ide • An angle can be generated by the rotation of two rays that share a fixed endpoint. • Let one ray remained fixed to form the initial side of the angle • Let the second ray rotate to form the terminal side. Side itial Vertex In Sid nal rmi e Te Initial Side Terminal Side • An angle with its vertex at the origin and its initial side along the positive xaxis is said to be in standard position. • If the terminal side of an angle in standard position coincides with one of the axes, the angle is called a quadrantal angle. Initial Side sec 42A intro to degree and radian measure.notebook October 27, 2016 • If the rotation is in a counterclockwise direction, the angle formed is a positive angle. • If the rotation is in a clockwise direction, the angle formed is a negative angle. • Angle measures represent a distance, so the sign in front is a sign of direction, not measure. The two most common units of measure for angles are Degrees and Radians. Degree Measure: 1 degree = of a circle. 90o angle is a right angle angles less than 90o are acute angles angles greater than 90o are obtuse angles sec 42A intro to degree and radian measure.notebook October 27, 2016 Degrees, Minutes and Seconds Fractional parts of angles are expressed in decimal form or in minutes and seconds. Notation: 1o = 1 degree 1' = 1 minute 1" = 1 second 1 degree = 60 minutes = 3600 seconds Example: Convert to decimal degree form. a) 245o10' b) 408o16'20" sec 42A intro to degree and radian measure.notebook October 27, 2016 Example: Convert to DoM'S". a) 345.12o b) 16.7865o Radian Measure: • The radian is based on the concept of a unit circle. • To define what a radian is, we will use the central angle of a circle, an angle whose vertex is the center of the circle. r s = r One Radian is the measure of a central angle θ that intercepts an arc s equal in length to the radius r of the circle. θ r where θ is measured in radians. sec 42A intro to degree and radian measure.notebook October 27, 2016 Degrees vs. Radians Since we know that 1 revolution = 360 o 2π radians = 360 degrees = 1 rev and π radians = 180 degrees To convert from degrees to radians, multiply by: To convert from radians to degress, multiply by: Convert from Degrees to Radians. Show Work! When converting from degrees to radians, all answers should ALWAYS be written in simplest rational form in terms of Pi. No decimals, unless problem specifies! sec 42A intro to degree and radian measure.notebook Convert from Radians to Degrees. Show Work! Homework: Read section 42 and Do pg 238, #'s 28 even & 1017 all October 27, 2016
© Copyright 2025 Paperzz