D-diagrams and Nuclear Data

D-diagrams and Nuclear Data
V.M.Shmakov and E.I.Cherepanova
RUSSIAN FEDERAL NUCLEAR CENTER
VNIITF
Snezhinsk 2013
Introduction
30 years ago Vyacheslav Ogibin from VNIITF suggested
using D-diagrams for organization and description of
spectral nuclear data for Monte-Carlo programs.
D-diagrams use only 4 nonstructural and 3 structural
elements.
D-diagrams were very convenient to create complex codes
by many people of different qualifications.
The experience showed that it was the good choice as Ddiagram are still successfully used.
n
e-
Reaction Data
e+
Cross Section -
σ(Eо)
Energy reaction
-Q
Particle type - n, , p, e-,…
time>0
n
A

p
B

n
Yield - , n , np, ne-, …
Energy out particle Cos(θ)
-

Time
-
t
Е
Total Data
σtot(Eо)
< Eя > - KERMA
σ*(ν-1) - production
…
The non-structured types
Integer
Real
Alphanumeric word
Alphanumeric string (cart)
“
”
The structured types
Choice (Branch)
Direct Product
Sequence
Using D-diagrams
•In documentation for the format description of text and
binary libraries
•For visually description of date structure and their
representation
•Using the following additional symbols: J (Jump), N
(Number), O (Omit) and Pac (Packing) show the data
representation on cards (for example: Hollerith with 80
position of ASCII).
•Using the following additional symbol for binary data: У
(Address) show the data representation in an array I and R
(IR-equivalent).
Data representation on ASCII cards
Additional symbols
• N - Number of repetitions or the branch Number
• J - Jump on the following card or a line where values of
the D-diagram will be placed.
• O – Omitting the current value of data.
• P – Packing two values on one field which consists of 12
positions each of which consists of six positions.
Some combinations:
• NJ – transmition to a new line after the number repetition
placemen.
• JNJ – After jumping place N and jump to a new line.
J
J
OutPat
OutPat :
IDPa
Pac
N
Pac
IDPa
Yield
ZAP

EnAnDs
J
ZAP
DepEnAnDs
Pac
Ei
Ei
i
i
Pac
J
ZAP
ZAP
EnAnDs
Pac
JNJ
int
E

lnE

JNJ
int
XSec :
J
XSec
TimeDs
int
N
NF
NF
N
J
Pac
J
Elow
Ehigh
DT
Elow
Ehigh
T
J
DT
Par
Pac
AnDs
(1)
EnDs
E_levl
(2)
E_levl
AnDs
P
EnDs
JNJ
(3)
N
AnDs
JNJ
(4)
NF
NF
Pac
(5)
Pac
EnAnDs
:
J
Par
EnDs
JNJ
JNJ
NF
NF
(6)
AnDs
JNJ
NF
NF
Par
AnDs
Par
EnAnDs
JNJ
NJ
Р(E0)
AnDs
(7)
J
(8)
Eo
JNJ
J
E
J
Eo
Eo
Eo
P (Eo)
Pac


F (Eo, E, )
J
W
W
JNJ
F(q)
Qi
q
E
P
EnAnDs
JNJ
Pac
(16)
P
JNJ
J
ТТI

q
E
NJ
F (Eo, E, )
(11)
EnDs
JNJ
Pac
J
F (Eo, , E)
(10)
P (Eo)
J
Eo
F (Eo,E,)
(9)
Eo
J
J
(13)
EnDs
Par
Pac
int
Pac
J
q
Qi
F
ТТI
AnDs
J
int
Eo
JNJ
Fr
E
Eo
Fr
ТТI
r
Eo
Fi
JNJ
J
Eo
q
Fi
Angle Distribution Data
W
JNJ

W
J
AnDs
:
H
AnDs
J
P
NJ
Eo
W
J
J
NJ
P
W
J
J
P

P
NJ
Eo
W

f
AnDs
3
1
13000 65
3
13000 66
8.50000+05
2
13000 67
-1.00000+00 5.00000-01 1.00000+00 5.00000-01
13000 68
8.00000+06
2
13000 69
-1.00000+00 5.00000-01 1.00000+00 5.00000-01
13000 70
1.50000+07
3
13000 71
-1.00000+00 2.00000-01 0.00000+00 3.60000-01 1.00000+00 1.08000+00 13000 72
J
AnDs
:
H
AnDs
W
J
NJ
Eo

P
JNJ
JNJ
J
En
Pn
K
T
E
P
Eo
T
(Watt Уатт)
NJ
Eo
JNJ
JNJ
J
EnDs :
(Maxwell)
EnDs
BR
BL
Eo
T
Evaporation
(Обрезанный спектр испарения)
Pac
JNJ
E
JNJ
J
P
JNJ
Eo
En
Pn
JNJ
U
JNJ
Eo
Eo
a
b
(Watt vs. energy)
JNJ
EFL
FH
Eo
T
(Watt vs. energy)
Particle Production Multiplicity

HNH
Yield :
H
Mult
ИНТ
PAC
Eo

Eo

HNH
ИНТ
HN
C
INT is the interpolation scheme identification number used in the range
= 1 y is constant in x (constant, histogram)
= 2 y is linear in x (linear-linear)
= 3 y is linear in ln(x) (linear-log)
= 4 ln(y) is linear in x (log-linear)
= 5 ln(y) is linear in ln(x) (log-log)
= 7 equal(y) is linear in x (equal-linear)
 is independent of Е0 and has constant value;
number of (Е0) particles is tabulated with low of interpolation, as a rule, ИНТ=2;
 - gamma production is set depending on energy Е0
Time Distribution Data
NJ
TimeDs
:
N
T
P
T
P
NJ
TimeDs
Pac
NJ
J
NF
Pac
NF
Par
Integral characteristic
J
INT
TotData
:
J
Eо

Eо

J
KERMAL
J
KERMA
J
N
J
G
NuEn
J
INT
KERMAL ( Е 0 ) 
KERMA( Е 0 ) 

i 1
i  fiss
N
N( E 0 ) 
 i ( E0 ) 

i 1
i  fiss
 Q fiss
(k )
(m) 
E 0  Qi   ( i( k ) ( E 0 )  E i )   ( i(,m ) ( E 0 )  E i , ) 

k
m

tot ( E 0 ) 
 fiss ( E 0 )
 Non ( E 0 )
(m)
(m)
  ( Non
, ( E 0 )  E Non , )
 tot ( E 0 ) m
 tot ( E 0 )
 
ЧПР
i
k
N
G ( E 0 )    i
i
m
  fiss ( E 0 )
(k )
(m)
m)
E 0  Qi   ( i( k ) ( E 0 )  E i ( E 0 ))  
(Q fiss   (fiss
,  E fiss , ( E 0 ) )

k
m
  tot ( E 0 )
tot ( E 0 ) 
 i ( E0 ) 
N
i
n
( E0 )  1
 i (E0 )
 tot ( E0 )
 i (E0 )
 Non ( E 0 )
(m)
   Non
, (E0 )
 tot ( E 0 ) m
 tot ( E 0 )