GEOPHYSICAL RESEARCH LETTERS, VOL. 21, NO. 16, PAGES 1719-1722, AUGUST 1, 1994 Volatility of elemental carbon S.G.Jennings •, C.D. O'Dowd 2, W.F. Cooke 3, P.J.Sheridan 4, andH.Cachier 5 Abstract. A volatilitytechnique wherebyaerosolparticles Volatility Instrumentation are heatedto the relativelyhigh temperature of 860 øC is usedto infer the presenceof elementalcarbonin polluted The experimental arrangement is the same as that air massesin the vicinity of the west coastof Ireland. The describedby Jenningsand O'Dowd (1990). The main core volume of elemental carbon for submicrometre sized of the apparatuswas that of a ParticleMeasuringSystem's particlescontainedin the aerosolis estimatedfrom the fall (PMS) light scatteringprobe: Active ScatteringAerosol off in numberconcentration at a criticalonsettemperature SpectrometerProbe (ASASP-X). The inlet to the probe of about730 -735 øC, as also obtainedfor laboratory consistedof a quartz tube, capableof being heatedto the carbonink aerosol. The techniquepermitsdeterminationof relativelyhightemperature of 860 øC. the elementalcarbon volume percentageof the total free aerosol volume, and an estimation of the abundance of Laboratory volatility measurements of carbon and elemental carbon contained within the black carbon fraction carbonate of the atmosphericaerosol. Supplementary black carbon massconcentrationmeasurements were obtainedusing a thermal method and an aethalometerabsorptionmethod. The work suggeststhat elementalcarboncan be identified using the volatility techniqueand that it can yield sizesegregated informationon the fractionof elementalcarbon in atmosphericaerosol. aerosols. The responseof the volatility apparatusto polydisperse laboratory carbon aerosol was first examined. Polydispersionsof carbon ink (Staedtler Mars 745) of concentration1 ml/l in distilledwater were generatedusing a De Vilbiss M40 glassnebulizerand then storedin a clean polythenebag before san•pling. Measurementswere made over 60-minute temperaturecycles, during which the ink carbonaerosolwas heatedto a temperattire of 860 øC in approximately3 minutesand then allowed to cool back Introduction close to ambient temperaturefor the remainder of the heating cycle. An exampleof the temperature-fractionation particulateorganiccomponent and a highly polymeric fractionreferredto as the blackcarbon(or sootcarbon) curvesobtainedfor carbonink aerosolfor six heatingcycles component. Atmosphericblack carbonis the dark fraction is shownin Figure 1. The temperaturefractionationcurves of thecarbonaceous aerosolwhereit represents 15 to 30% for carbonink are for range 3 (0.09 - 0.195/xm dimneter) of the total carbonmassonly (Wolff et al., 1982 and and range2 (0.15 - 0.3/xm diameter)of the particlesizing Cachieret al., 1990). Theblackcarbonappears to havea probe. The form of the fractionationcurveswere foundto low organiccontentas indicated by its relativelylow H/C be largely independentof particle size. The refractory ratio of the order of 0.4 (T.Kuhlbusch,personal component of the aerosol evaporates at temperatures Smokeaerosolsare composexl of two main tractions:the communication, 1993). Witlfin thisblackcarbonfraction, pureelemental carbon(or graphitic carbon)is likelyto forn• a significantfraction which up to now has not been betweenabout730 - 735 øC causingfairly rapidrexluction in particle concentrationbeyond that temperature. The volatile propertiesof the following carbonateconstituents: sodium carbonate, calcium carbonate and annnonium evaluated. The aerosolvolatilitywork to date (inchidingthat of Pinnicket al (1987),Clarkeet al (1987)),haspermitted inferenceof at least three main atmospheric aerosol carbonatewere alsoinvestigatedin the laboratoryand their temperaturefractionationcurves are shown in Figtare 1. constituents: sulphuric acid,ammonium sulphate andsodium Temperature FractlonatlonCurves chloride.Thisletterdescribes theextension of thevolatility techniqueto thatof elementalcarboncarbonaceous aerosols. 1Department of Experimental Physics, University College Galway, Ireland 2Department of Pure and AppliedPhysics,UMIST, Manchester, UK 3Environment Institute, CECJoint Research Centre, lspra, Italy 4Climate Monitoring andDiagnostics Laboratory, NOAA, Boulder, Colorado 5Centre desFaibles Radioactivites, Laboratoire mixteCNRSCEA, Gif sur Yvette, France. Copyright1994by theAmericanGeophysical Union. TEMPERATURE (deucescelsius) Figure I Laboratoryaerosoltemperaturefractionationcurves for sodium carbonate,carbon ink, sodiumchloride, calcium Paper number 94GL01423 carbonate and ammonium 0094-8534/94/94GL-01423503.00 1719 carbonate. 1720 JENNINGS ET AL.' VOLATILITY OF ELEMENTAL 4 Rapid fall off in particleconcentration occurredfor sodium ß ' ' ß 11 carbonate, calcium carbonate and anunonium carbonate at The temPerature-fractionation curve,obtained for sodium ' ß ß ß ' 2 chloride, using the stone volatility apparatus, is also includedin Figßire1. Volatilizationwith restlltantfalloff in concentrationbegins at about 600 øC. This allowed differentiationto be madebetweensodiumchloridetogether with potentialatmosphericaerosol carbonateconstituents with that of elemental carbon. The laboratory of carbon are used as a reference '1 3 temperatures of about700øC,380øCand90øCrespectively. measurements CARBON data set with which to compareambientaerosolfractionatßon curves in order to infer the presenceof elementalcarbonas an atmospheric aerosolconstituent mainlyin thesubmicrometre o 10 z •0 -2 .10-3 range. in Volatility of carbonaceous aerosol atmosphere the Two sets of field measurementsare presentedin tiffs study. The first set of measurements were madeaboarda Figure 3 Aerosol numbersize distributionat Mace Head on 6 April 1989 for a rangeof temperatures. orderto minimizeparticleloss)to the inletof the particle counter. German researchvessel, Friedrich Heinke off the west coast Backtrajectories indicated thatthe air masshadrecently of Ireland, (53ø.07'N, 9ø.39'W). The particlevolatility traversedoverthe U.K. andIrelandtransporting pollutants equipmentwas placedabovethe bridgeat a heightof 18 m to the samplinglocation. An example of the aerosol abovethe water level. The equipmentwas situatedoutside volatilitydata taken is shownin Figßire2(A). Aerosol sothattheaerosol wassampled as closeaspossible (in concentration per cc in four particlesize rangesis plotted versus temperaturefor the period April 6 1989. The ambient aerosol particle concentrationlevels remained relativelyconstant overtheeight-hour period. Thedatahas been averaged over the eight hourly cycles, sothata single • I0 • temperaturefractionatßon curve resultsfor each particle range. The more rapid fall-off in particleconcentration at around 730-740 øC for the three lower size ranges resemble • I0• closelythe laboratorythermal responsedata for carbon whichis superimposed on the field data in Figure2(A). The strong resemblancesuggeststhat this fraction is • oo u Z z I It o I I Ill I O0 I I III I_| 200 300 I I_111 ils iI •OO iii 500 TEHPERATURE(degrees , i Ii iii I El GO0 700 !1 I i 11 8OO ! 900 ceLclus) ß , composedpredominatelyof elementalcarbonaerosol. It is seenthat the largestparticle size fraction is unaffectedat these high temperattires. Fluctuations in the number concentration of the largersizedparticlesis likelyto be due to statisticalnoise,particularat the elevatedtemperatures (greaterthan about400 øC) due to the low concentrations encountered. .... . ß. . ' --..- 015-03 0 2,1 - 0 8,I Ism - -O fl - 3 0 CAllOff INI Volatility measurementsmade at the Mace Head atmospheric researchstationover the period27-28 May 1992 are shown in Figure 2(B). The period was characterised byhighpressure centred in northwestEtarope which brought continentalpolluted air massesfrom an easterly direction to the Mace Head site. The ambient aerosol concentration remained ß constant over a six hour periodandan averagedtemperature fractionation curveover the six cyclesfor each particle size interval is shownin Figtire2(B). A laboratoryresponsecurvefor carbonink .. ß aerosolis also superimposed on the data. The gradual continuous decreasein particleconcentration betweenabout ~ c•o i 200 i 400 ! coo ! ! ! 0oo TEHPERATURE( de9rwes ceLclus) Figure 2(A) Temperaturefractionatßon curve for aerosolat KilleanyBay, AranIslands,off thewestcoastof Ireland,April 6, 1989 for the temperaturerangefrom ambientto 860 øC. 01) Temperaturefractionatßon curvefor aerosolat Mace Head atmosphericresearch station, on May 27, 1992, for the temperaturerange from ambient to 860 øC. 300 and700 øC (seenalsoin Figure2 (A)) maybe dueto the volatilization of organic carbon and/or soot carbon (there is no clear cut distinction between the two components, Cachieret al (1989)). Theobserved sharpfall off at about730øCfor the two lowestsize rangeswe attribute to the volatilization of elemental carbon. The minor peaksappearingat around430 -500 øC may be due to (a) statistical fluctuations at thoserelativelylowparticlenumber JENNINGS ET AL.' VOLATILITY OF ELEMENTAL CARBON 1721 1000 9OO 1C •?;jii:::?•-----%, ::::";•:'%-•. .............. '•::::•:• ................... ;::":::' '."•?•..• ....L....... .;.;.• ............ -•Q•:--';:e•:•:.•::-'5•-•:•:::•:.• ........ •. •.•:::-:•:••::::'"2'%?•'/•) '•'•"•'"'"•••••:••••'• ' ' .•.-.• •:;;';'.......•::•... 'w:e• .:•-• ;•:-::•:•:?. •7•-:;• -::•:-•'" '....:-.'-;-•='•:•:A•::;%.,..•3:.......: ;:•:.::::•:::::.:::•:•..::•--•r• +•- Fibre 4 An el•tron microcope photomicrograph of aerosol pa•iclescoll•t• at MaceHead,27 May 1992. Pa•icleA •ge aggregate pa•icle rich in Na andtraceelements; 6OO 5OO 0 $1 :•oo/ill ^,• fi 0 0 1 2 3 - 4 Cu • 6 7 6 g 10 ENERGY (keV) little caren. Pa•icle B- Carbon-richaggregatewith lots of c•s• trace elements. Pa•icle C - Small, sphericalC-rich Figure 5 An X-ray sp•trum of a C rich aggregate particle, particle,probablya combustion sphere. ParticleD identifiedas particleB in Figure4. Carbonaceous chainaggregate-mostlyC. conjunctionwith a Bendix (Unico) 240 cyclone to collect concentrations or (b) somecharringof organiccarbonanti ambient aerosol. A flow of 113 Uminute through the possibly of blackcarbon.Evenif charring doesoccurwith cycloneyielded a particlediametercut off size of 2.4 •m andLippman, 1977).Blackcarbon content Oxg m-3) production of moreblackcarbonor elemental carbon,the (Chan resultant increase in particlenumberconcentration - of not was determined using an analytical thermal method morethana fewparticles cm-3 (Figure 2(B))- will not affect the number concentration of the inferred elemental previouslyreported(Cachier et al, 1989). An estimate calculated from of the mass due to elemental the differential number carbon was size distributions carbonby morethana few per cent. Figure3 showsthe change in particle number size distributionswith obtainedby the ASASP-X probe, assunfinga particular temperature for the dataof Figure2(A). A significantdensity. Whilst the density of elemental carbon is reduction inparticle number concentration, forparticle radii dependent onmorphology andsurface composition, a vah•e uptoabout 0.2/.tn•, between temperatures 710øCand 860of2 gcm -3isused here inlinewith values quoted inthe øC is observed, whichwe attributeto the presence of literature. A sununary of estinmted massconcentration elemental carbon.Thevoh•me andpercentage of thetotal variesforblackcarbon andelemental carbon usinga range volume fortheinferred elemental carbon is0.28/.tm 3 cm-3 of techniques is shown in Table1 forMaceHeadaerosol and4.2%respectively. Theresidual aerosol volume at860 dataofMay27-28,1992.Theaethalometer (Hansen etal, øCwhich ispossibly ofcrustal origin was0.4%ofthetotal 1984)values depend onthevalidity foruseof a constant volume. Thepercentage volatilized between 315øCandvalue (19m2g -1)fortheattenuation cross-section, a. 710øCof thetotalvolume was7.1%. However, Liousse et al (1993)findvariations in a which Supplementary measurements were available fortheMacearelikely todepend onthesource, ageandtype ofnfixin• Head data fortheperiod 27- 28May1992. The aerosol ofthecarbon aerosol. They obtain aavalue of12m2g -• wascollected ona formvarsubstrate withsiliconmonoxidefor suburban aerosol.A similarlowering in valueof 0'for coating andsupported bytransmission electron nficroscope theMaceHeadpolluted episodes of May27-28,1992 (TEM)tabbed grids.Substrates werefixedtothethreewould hnprove thedegree ofagreement between aethalomestages of a PIXIECorporation cascade hnpactor, - operating ter inferredblack carbonmassanti thatdetemfinexlusingthe thermal method. at 1 lpm flow rate.A photomicrograph of a grid sample, shownin Figure 4, inch•deagglomerations of sphende An estimateof the uncertaintyin the ASASP-X data is particles. An X-ray spectrum of an aggregate particle obtainedthroughcomparisonof its responsecharacteristics (whichis indicatedby the letterB in Figure4) showsa for sphericalparticlesof polystyrenelatex (which closely considerableamount of carbon, considerablyabove the blanklevel, in Figure5 indicating thatcarboncomprises a major massfractionof that particle. approximatesthat of the manufacturer'scalibration) with that of carbon. Despitea wide rangeof complexrefractive The elevated index"m" valuespurportedfor carbon,a valueof m=2 potassium K+ inFigure5 ischaracteristic ofcombustion or - 1.0i basedon a rangeof likely refractiveindexvaluesis responses' comparison showsthatthe biomass burningaerosols (Cachieret al (1991)). An in- used. Thetheoretical housefibrousglass47 mm filter samplerwasalsoused in ASASP-X will oversizecarbonparticleshavingradii less Table 1. Comparison ofBlack Carbon andElemental Carbon Mass Concentration (ngm-3)Values, using Different Methods,at the Mace Head AtmosphericResearchStation. Period May27 1992 (black carbon) Aethalometer average vah•e (black carbon) Inferred from volatility data (elemental carbon) 1037_+105+ 789 _+ 25' 594* 1389 __ 140 624 _+ 4 720 Thermal method 1021-2017 May 28 1992 0221-1019 + Estimated precision in therangeof 10%(Liousse et al., 1993). ß Standard errorbased onsome40 individual measurements. *Inferredelemental carbonmassmaybe overestimated by up to a factorof 1.75 (seetext). 1722 •ENNINGS ET AL.: VOLATILITY OF ELEMENTAL CARBON than 0.15 /am (over ranges2 and 3) by an averageof Cachier,H., M.P. Bremond,andP. Buat-Menard,Organicand blackcarbonaerosolsin the remotemarineatmosphere of 20.7%, (anoverestimation in massby a factorof 1.75)if a the NorthernHemisphere,Proceedings of the International calibration basedon thepolytyrene latexresponse is used. Conferenceon Global AtmosphericChemistry(Beijing The particlesizingprobehas a lower cut off diameterof 1989), Newman and Kiang eds, BrookhavenNational 0.09/an whichprobablyresultsin an underestimate of the Laboratory,249-261, 1990. numberconcentration of elemental carbonaerosolpresent. Theremaybe someunvolatilised carbonremaining at the Cachier, H., J. Ducret, M.P. Bremond, V. Yoboue, J.P. Lacaux, A. Gaudichet,and J. Baudet,Biomassburning uppermost temperaturesof the volatility apparatus. aerosolsin a savannaregionof theIvory Coast. In: Global However,the volumeof residueparticlesis only of the BiomassBurning, J.S. Levine (ed.), IV[IT Press,174-180, order of about 10% of the inferred carbon volume. 1991. Underestimation of particlemassmay alsooccurdueto the Chan, T., andM. Lippman,Particlecollectionefficienciesof undersizing of thehighlyabsorbing carbonparticles greater air samplingcyclones:an empiricaltheory,Env. $ci. and Technol., 11, 377 - 382, 1977. than 0.15 /am in radiusthroughthe use of the ASASP-X probe. The comparisonbetweenthe inferred elemental Clarke, A.D., N.C. Ahlquist, and D.S. Covert, The Pacific marine aerosol:evidencefor natural acid sulfates, J. carbonmassfrom theparticlevolatilitymeasurements with Geephys.Res., 92, 4179-4190, 1987. the blackcarbonmassobtainedusingthe thermalmethod gives a measureof the relative abundanceof elemental Hansen, A.D.A., carbon in the black carbon fraction of carbonaceous aerosols. A minimum percentageof about 30% of elementalcarbonwithin the black carboncomponent is obtained,throughusingthe upperlimit correctionto the inferred mass. Discussion aethalometer- H. Rosen, and T. Novakov, The an instrument for the real-time measurement of optical absorptionby aerosol particles, $ci. Total Environ., $6, 191-196, 1984. Heintzenberg,J., and D.S. Covert, Size distributionof elementalcarbon,sulphurandtotalmassin theradiusrange 10'6to 10'4 cm,Sci.TotalEnviron., 36, 289-297,1984. Jennings,S.G. and C.D. O'Dowd, Volatility of aerosolat Mace Head, on the westcoastof Ireland,J. Geophys.Res., 95, 13,937-13,948, 1990. A volatilitytechniqueis usedto infer the presence and Liousse,C., H. Cachier, and S.G. Jennings,Optical and thermal measurements of black carbon aerosol content in amount of elementalcarbon in polluted air masses. It permitsan in-situ,continuous and relativelyrapidmethod differentenvironments: variationof the specificattenuation cross-section, sigma, (o), Atmos. Environ., 27A, 1203of determiningelementalcarbon number and volumetric 1212, 1993. concentrations in the atmosphere.It shouldbe pointedout andG. Fernandez,Volatilityof howeverthat the techniqueoperatesmosteffectivelyfor Pinnick,R.G.,S.G.Jennings, aerosols in the arid Southwestern United States,J. Atmos. relatively polluted air masses- possessing carbon mass concentration levels inexcess ofapproximately 200ngm'3. Sc/. 44, 562-576, 1987. Rosen,H., andA.D.A. Novakov,Opticaltransmission through aerosoldepositson diffuselyreflectivefilters:a methodfor measuringthe absorbingcomponent of aerosolparticles, Appl. Opt., 22, 1265-1267,1983. Stevens, R.K., T.G. Dzubay, R.W. Shaw Jr., W.A. T•0sis toaparticle particle number concentration of 25 - perequivalent cm3formean radii of0.1 - 0.15/zm. This approximatethresholdlevel is considerednecessaryto providea sufficientlyhigh signalto noiseratio, the noise beingdueto statistical fluctxmtions in low particlenumber concentrations, in the eventof lesspollutedair masses. A percentageof betweenabout2 - 4 % of the estimated volume of elemental carbon to that of total aerosol volume in the 0.09 - 3.0 tun diametersizerangefoundin thiswork is in broad agreementwith the finding of some other workers suchas Stevenset al (1980) andHeintzenberg and Covert(1984). The morphological andX-ray spectraldata providessupporting evidencefor the presence of elemental carbon and black carbon in the sampledaerosol. In addition,the separatethermalmeasurement techniqueof Cachier et al (1989) on the bulk aerosol permitted comparisonof black carbon content to be made with volatility inferredelementalcarboncontent. McClenny,C.W. Lewis, andW.E. Wilson,Characterization of the aerosolin the GreatSmokymountains, Environ.Sci. Technol.12, 1491-1498, 1980. Wolff, G.T., P.J. Groblicki, S.H. Cadle, and R.•I. Countess. Particulatecarbonat variouslocationsin the United States, In: ParticulateCarbon:Atmospheric Life Cycle,Wolff G.T. and Klimisch, R.L., eds., PlenumPress,New York, 297315, 1982. S.G. Jennings, Department of Experimental Physics, University College Galway, Ireland. (e-mail:phyjennings •bodkin. UCG.ie) C.D. O'Dowd, Departmentof Pure and AppliedPhysics, UMIST, Manchester M60 1QD, England. (email:colin.o'dowd@mailhost. mcc.ac.uk) W.F.Cooke, EnvironmentInstitute,T.P.460, Commissionof Acknowledgements. The provisionof air massback the EuropeanCommunities,Joint ResearchCentre, 1-21020 trajectoriesfor the Mace Head Atmospheric ResearchStation Ispra (Varese),Italy (e-mail:william-cooke•ei.jrc.it) P.J. Sheridan,Climate Monitoring and DiagnosticsLabby Joyce Harris, CMDL, NOAA, Boulder, CO, USA is oratory, R/E/CGI, NOAA, 325 Broadway,Boulder,CO80303, gratefully acknowledged. We also wish to thank Gunther USA. Gassmann,chief scientistaboardthe Friedrich Heincke and the crew, for shiptime and their valuablehelp. References H. Cachier, Centre des Faibles Radioactivites, CNRSCEA,91198-Gif sur Yvette, France (e-mail:[email protected]. cnrs-gif.fr) Cachier, H., M.-P. Bremond,and P. Buat-Menard,Deter- minationof atmospheric sootcarbonwith a simplethermal (ReceivedJuly29, 1993;revisedDecember10, 1993;accepted method,Tellus, 4lB, 379-390, 1989. March 18, 1994.)
© Copyright 2026 Paperzz