MAE 143A: Homework 4 Solutions Jacob Huffman and Elena Menyaylenko Date Due: February 5th , 2013 Problem 1: (a) Duffing Equation. ẍ(t) + δ ẋ(t) + βx(t) + αx(t)3 = γ cos(ωt) Matlab Code for duffing.m: function ydiff=duffing(t,y) %Function duffing() for simulation of the Duffing oscillator, a nonlivear %system with sinusoidal excitation %Local parameters alpha=1; beta=-1; gamma=0.3; delta=0.2; omega=1; %State vector is [y(t); ydot(t)]; dydt=[y(2); -delta*y(2)-beta*y(1)-alpha*(y(1)ˆ3)+gamma*cos(omega*t)]; ydiff=dydt; return (b) Mathieu Equation. ẋ(t) + [a − 2 cos(2t)]x(t) = 0. Matlab Code for mathieu.m: function ydiff=mathieu(t,y); %function mathieu() for simulation of mathieu equation using ode45 %parameter values 1 a=0.3; q=0.1; %state vector is [y(t);ydot(t)] dydt=[y(2); -(a-2*q*cos(2*t))*y(1)]; ydiff=dydt; return Since the mathieu equation is linear, with zero input and zero initial conditions, the solution will be zero! Here is the Matlab code to call the functions: % Hwk Question 1 % part (a), calling duffing function figure(1) subplot(1,2,1) [t,y]=ode45(@duffing,[0,100],[0;0]); plot(t,y);shg title (’Duffing: \alpha=1,\beta=-1,\gamma-0.3, \delta=0.2,\omega=1’) xlabel (’time(sec)’);ylabel(’solution & its derivative(units/time)’); legend(’signal’,’signal derivative’) subplot(1,2,2) % part (a), calling mathieu function [t,x]=ode45(@mathieu,[0,20],[1;1]); plot(t,x);shg hold on [t,x1]=ode45(@mathieu,[pi/2,20],[1;1]); plot(t,x1,’k’);shg title (’Mathieu: \alpha=0.3,q=0.1’) xlabel (’time(sec)’);ylabel(’solution & its derivative(units/time)’); legend(’signal’,’signal derivative’) hold off 2 Duffing: α=1,β=−1,γ−0.3, δ=0.2,ω=1 Mathieu: α=0.3,q=0.1 1.5 2.5 2 solution & its derivative(units/time) solution & its derivative(units/time) 1 0.5 0 −0.5 −1 1.5 1 0.5 0 −0.5 −1 −1.5 −2 −1.5 0 20 40 60 time(sec) 80 −2.5 signal 100 0 signal derivative 5 10 time(sec) Figure 1: Duffing and Mathieu Plots Problem 2: y(t) = h(t) ∗ u(t) Z ∞ = h(τ )u(t − τ ) dτ −∞ Z ∞ = u(τ )h(t − τ ) dτ = u(t) ∗ h(t), [Proved on midterm] −∞ Z ∞ = cos(ωτ )1(τ )e−(t−τ ) 1(t − τ ) dτ , −∞ t Z cos(ωτ )e−(t−τ ) dτ , [Proved on midterm] 0 Z t −t =e eτ cos(ωτ ) dτ , 0 1 et −t √ =e cos (ωt − atan2(ω, 1)) − √ cos (−atan2(ω, 1)) , 1 + ω2 1 + ω2 −t 1 e =√ cos (ωt − atan2(ω, 1)) − √ cos (−atan2(ω, 1)) 1 + ω2 1 + ω2 = As t → ∞ y(t) → √ 1 1+ω 2 cos (ωt − atan2(ω, 1)) 3 15 20 Gain Plot Magnitude(dB) 0 −20 −40 −60 −80 −3 10 −2 10 −1 0 10 10 1 10 2 10 3 10 Phase Plot Phase(deg) 0 −50 −100 −3 10 −2 10 −1 10 0 1 10 10 Frequency (rad/s) Figure 2: Bode Plot 4 2 10 3 10 Matlab Code for question 2: % Hwk Question 2 figure(2) title(’Bode Plot’) w=logspace(-3,3); gain=1./sqrt(1+w.ˆ2); phase=(-atan2(w,1))*180/pi; subplot(2,1,1) semilogx(w,20*log10(gain)) ylabel(’Magnitude(dB)’); title(’Gain Plot’) subplot(2,1,2) semilogx(w,phase) xlabel (’Frequency (rad/s)’);ylabel(’Phase(deg)’); title(’Phase Plot’) %to check figure(3) H=tf([1],[1 1]) bode(H) 5
© Copyright 2026 Paperzz