Section 5.1: Square Root Property #1 - 20: Solve the equations using the square root property. 1) π₯ 2 = 16 2) π¦ 2 = 25 3) π 2 = β49 4) π2 = β16 5) π2 = 98 6) π 2 = 24 7) π₯ 2 = β75 8) π₯ 2 = β54 9) (π₯ β 3)2 = 25 10) (π₯ + 2)2 = 81 11) (2π₯ β 5)2 = 49 12) (3π₯ + 7)2 = 121 13) (π₯ β 4)2 = 150 14) (π₯ β 8)2 = 48 15) (2π₯ β 6)2 = β75 16) (5π₯ + 9)2 = 84 1 2 17) (π₯ + ) = 49 3 1 2 18) (π₯ β ) = 16 2 2 2 19) (π₯ + ) = 21 3 1 2 20) (π¦ β ) = 19 5 #21 - 38: Find a value of C so that the expression becomes a perfect square. Factor your result. We refer to this method as completing the square. 21) x2 + 6x + C 22) b2 + 8b + C 23) y2 + 10y + C 24) x2 + 16x + C 25) b2 β 4b +C 26) d2 β 12d +C 27) x2 β 14x + C 28) y2 β 20y + C 29) x2 + 6x + C 30) b2 + 14b + C 31) x2 +3x+ C 32) v2 + 9v + C 33) x2 β 7x + C 34) y2 β 5y + C 35) a2 β 11a + C 36) b2 β b + C 1 37) π 2 + π + πΆ 2 1 38) π2 β π + πΆ 3 #39 - 62: Solve by completing the square. Specifically, rewrite the equation so it can be solved using the square root property. That is, first solve for C, like in problems 21-38, and then solve using square roots like problems 1-24. 39) x2 + 6x = 7 40) b2 + 8b = 9 41) a2 + 10a β 24=0 42) y2 + 6y β 16=0 43) a2 β 10a = 75 44) y2 β 6y = 7 45) x2 β 8x+7 = 0 46) y2 β 4y+3=0 47) x2 + 2x= 6 48) b2 + 8b = 4 49) a2 β 12a β18=0 50) x2 β 6x+24=0 51) x2 + 6x = 5 52) y2 + 10y = 12 53) b2 + 6b = 11 54) x2 β 6x= -4 55) x2 + 8x = -20 56) y2 -6y = -16 57) x2 + 3x + 5 = 0 58) b2 + b β 4 = 0 59) 2x2 + 6x β 5 = 0 60) 3x2 + x β 4 =0 61) 4x2 + x β 3 = 0 62) 2x2 + 23x +11=0
© Copyright 2026 Paperzz