The Custom 3D Printed Earbud Cover

The Custom 3D Printed Earbud Cover
Major Qualifying Project completed in partial fulfillment of the Bachelor of Science degree at
Worcester Polytechnic Institute, Worcester, MA
Submitted by:
David Boroyan
Kelly Morgan
Matthew Mulvey
Submitted to:
Project Advisor: Frank Hoy
Project Co-Advisor: Karla Mendoza
Date: April 28, 2014
Abstract
Due to the recent explosion of mobile multimedia devices, the headphone industry has
become exceedingly large and diverse worldwide. The most popular style of headphones are inear “earbuds.” Despite their extreme popularity, there is a common consumer complaint in that
earbuds tend to fall out or become uncomfortable with use, causing an interrupted listening
experience. EarThotix solves this problem with the custom 3D Printed Earbud Cover. Using a
blend of high-end technologies, EarThotix delivers a custom product with a streamlined
production process that delivers an earbud that fits our customer’s ears only.
1|Page
Acknowledgements
This Major Qualifying Project was successfully completed with the support of the following
individuals. We would like to recognize:
•
Professors Frank Hoy and Karla Mendoza who have advised the team since A term,
offering expert guidance and providing helpful insight and information that supported our
project from the very beginning.
•
The WPI community and others who took the time to answer our questions and
participate in our surveys. Their input served as valuable data to our report and was an
inspiration to our project solution.
•
Erica Stults for her professional advice on device feasibility, and for providing our team
with a unique perspective on 3D printers and 3D printing.
•
Natasha Aljalian, a patent lawyer, for her guidance regarding intellectual property rights
2|Page
Table of Contents
Abstract ........................................................................................................................................................ 1
Acknowledgements ...................................................................................................................................... 2
Table of Figures ............................................................................................................................................ 5
Executive Summary ...................................................................................................................................... 7
1.0 Introduction ............................................................................................................................................ 8
2.0 Background ........................................................................................................................................... 10
2.1 3D Printing Devices and Methods ................................................................................................... 10
2.2 3D Printing in Biomedical Engineering ............................................................................................ 14
2.2.1 Bones ......................................................................................................................................... 15
2.2.2 Dental ........................................................................................................................................ 15
2.2.3 Prosthetics ................................................................................................................................. 16
2.2.4 Casts ........................................................................................................................................... 16
2.2.5 Hearing Aids .............................................................................................................................. 17
2.2.6 Tissue ......................................................................................................................................... 17
2.3 Headphone Market .......................................................................................................................... 18
2.3.1 Problem in the Market .............................................................................................................. 18
2.3.2 Overview of the Headphone Market ........................................................................................ 19
2.3.3 Basic Info on How Headphones are Traditionally Made ......................................................... 21
2.3.4 Example of 3D Printing in the Current Market......................................................................... 21
2.3.5 Why We Chose the Headphone Market ................................................................................... 22
3.0 Methodology ........................................................................................................................................ 23
3.1 Investigate the Current Devices, Processes, and Materials of 3D Printing .................................... 23
3.1.1 Scholarly Reports on 3D Printing Methods .............................................................................. 24
3.1.2 Technology and Business News Articles ................................................................................... 24
3.1.3 Market Leaders’ Websites and Personnel ................................................................................ 24
3.2 Research Current and Developing Competition and Target Market .............................................. 25
3.2.1 Industry Research...................................................................................................................... 25
3.2.2 Market Research ....................................................................................................................... 25
3.2.3 Consumer Reports ..................................................................................................................... 26
3.2.4 Initiate an On-Campus Survey .................................................................................................. 26
3.2.5 Potential Customer Conversation............................................................................................. 26
3.2.6 Determine how research results will be incorporated into business plan. ............................ 27
3|Page
3.3 Conduct Interviews .......................................................................................................................... 27
3.3.1 Intellectual Property Professional Interview ........................................................................... 27
3.3.2 3D Printing Expert Interview..................................................................................................... 27
3.4 Compose a Business Plan ................................................................................................................. 28
3.4.1 Business Model Canvas and SWOT ........................................................................................... 28
3.4.2 Plan Template Research............................................................................................................ 29
3.4.3 Determining Business Strategies .............................................................................................. 29
4.0 Findings and Analysis ........................................................................................................................... 30
4.1 Devices, Processes, and Material .................................................................................................... 30
4.2 Market Need..................................................................................................................................... 32
4.2.1 Survey Results ........................................................................................................................... 32
4.3 Current and Developing Competition in our Target Market .......................................................... 38
4.4 Interview Results .............................................................................................................................. 39
4.4.1 3D Printing Expert Interview..................................................................................................... 39
4.4.2 Intellectual Property Interview................................................................................................. 40
4.5 The Business ..................................................................................................................................... 40
4.5.1 Business Model Canvas and SWOT analysis ............................................................................. 41
4.5.2 Start-Up Competitions .............................................................................................................. 42
5.0 Conclusion ............................................................................................................................................ 43
6.0 References ............................................................................................................................................ 44
Appendix A: Business Plan ......................................................................................................................... 47
4|Page
Table of Figures
Figure 1: Age Survey Question .................................................................................................................. 322
Figure 2: WPI Affiliation Survey Question................................................................................................. 322
Figure 3: Headphone Style Survey Question ............................................................................................ 333
Figure 4: Industry Averages for Styles of Headphones Sold in 2013 ........................................................ 344
Figure 5: Highest Feature Value Survey Question .................................................................................... 344
Figure 6: Comfort and Fit Survey Question............................................................................................... 355
Figure 7: Headphone Use Survey Question .............................................................................................. 366
Figure 8: Earbuds Falling Out During Use Survey Question ...................................................................... 366
Figure 9: Price Willing to Pay to Improve Headphone Fit Survey Question ............................................. 377
Figure 10: Business Model Canvas ............................................................................................................ 411
Figure 11: SWOT ....................................................................................................................................... 422
5|Page
Authorship
Abstract ..................................................................................................................................Boroyan
Acknowledgments ...................................................................................................................Morgan
Table of Contents .....................................................................................................................Morgan
Table of Figures .......................................................................................................................Morgan
Executive Summary.................................................................................................................. Mulvey
1.0 Introduction ........................................................................................... Boroyan, Morgan, Mulvey
2.1 3D Printing Devices and Methods ....................................................................................... Mulvey
2.2 3D Printing in Biomedical Engineering .................................................................................Morgan
2.3 Headphone Market ........................................................................................................... Boroyan
3.1 Investigate the Current Devices, Processes and Materials of 3D Printing .............................. Mulvey
3.2 Research Current and Developing Competition and Target Market ..................................... Boroyan
3.3 Conduct Interviews............................................................................................................ Boroyan
3.4 Compose a Business Plan ....................................................................................................Morgan
4.1 Devices, Processes and Material ......................................................................................... Mulvey
4.2 Market Need .....................................................................................................................Boroyan
4.3 Current and Developing Competition in our Target Market................................................. Boroyan
4.4 Interview Results..................................................................................................Boroyan, Mulvey
4.5 The Business ......................................................................................................................Morgan
5.0 Conclusion ............................................................................................. Boroyan, Morgan, Mulvey
Appendix A: Business Plan............................................................................ Boroyan, Morgan, Mulvey
Morgan formatted the report
6|Page
Executive Summary
Modern earbud users expect to be able to listen to their music regardless of situation or
activity. As earbuds popularity increases, the environment in which they are utilized grows more
diverse. More active earbud users share a common complaint that their earbuds do not fit
satisfactorily and frequently fall out during use. Interruption of music can tarnish the user
experience, and lead to physical discomfort after repeatedly jamming the earbud back where it
belongs. This combination of pains creates an opportunity for improvement of customer
satisfaction with earbud use.
Our proposed solution is to introduce a custom manufactured earbud cover that can attach
onto a user’s current pair of earbuds. This add-on will significantly increase the comfort of the
user, by simultaneously improving fit and minimizing how often earbuds fall out. The 3D
scanning and printing combination will deliver the custom solution to the customer faster and
cheaper than any current comparable market offering.
The purpose for the report was to investigate and validate the consumer pain, identify the
appropriate technologies to deliver the solution, and perform a market analysis to determine its
feasibility. We compiled these findings to formulate a business plan based on our solution. Using
this business plan, we hope to enter start-up competitions such as MassChallenge and eventually
launch our venture. We gained the information through market research, survey, and general
conversations with professionals in related fields. This information helped us conclude that we
have a feasible solution to the market need, and our business plan has prepared us to enter the
market.
7|Page
1.0 Introduction
Fulfilling the requirements for management engineering with biomedical and mechanical
engineering concentrations, this project developed an organic idea into a comprehensive business
plan using concepts and tools learned from various WPI business and entrepreneurial courses.
The criteria for the capstone project includes an incorporation of everything students have
gathered from course work and apply it to solve real world problems. According to the WPI
Projects Program Website, “an MQP is a senior year capstone setting the stage for your career
launch...students are expected to deliver genuine and measurable value” (WPI, 2014). The
business plan written for this project is in itself a collection of values learned from Marketing,
Finance, Business Development, and Management courses we have taken through the Business
School at WPI. Our business plan interrelates various concepts learned from these courses and is
the ultimate representation of what a senior year capstone project should be. This project exceeds
the criteria for a completed MQP, as we were able to generate substantial information required
for filing of a provisional patent, as well as networking with extremely influential entrepreneurial
advisors. We believe upon completion of the MQP, we are ready to transform this project into a
company.
3D Printing is a rapidly expanding technology which has potential to reinvent the
manufacturing industry. It is currently being used in a variety of applications, yet it is in a very
early stage of market penetration. At the same time, the headphone market has grown to become
an extremely large industry worldwide, and the most popular style of headphone is the in-ear
bud, or earbuds. While earbuds are extremely popular, we have found that there are a few
common consumer complaints. Consumers have found that most earbuds do not fit their ears
8|Page
well with extended use, which leads to them falling out during exercise, discomfort, and
ultimately n discontinuous and dissatisfying listening experience.
The solution to the pain of ill-fitting earbuds is the EarThotix custom earbud cover,
which is 3D printed based on a high resolution in ear scan of the customer’s ear canal. Able to fit
on any existing earbud, the EarThotix cover will improve the listening experience of the user by
eliminating the need to constantly adjust or reinsert one’s earbud. The cover is created with a
medically approved biocompatible photopolymer, quite similar to what is used modern hearing
aid manufacture. By combining a brand new device for rapid in ear scanning and the precision of
a 3D printer, EarThotix will be able to deliver an unrivaled custom product in significantly less
time than any current market competitor.
The market is ready for our product. Consumer reports, blogs, conversations, and the
results of our survey show that there is a need for our product due to customer dissatisfaction
with current earbud fit. Consumers are using more personalized audio than ever before. Industry
reports show that the headphone market is currently a 1.5 billion dollar industry with 54% of the
market composed of earbuds. Our product serves as an add-on feature to currently existing
earbud brands. As a result, we do not pose as a direct threat to popular earbud competitors. We
use a unique manufacturing process that is currently unmatched in the industry, involving 3D
printing technology. As a result of the size of the market, our minimal threat to already existing
competitors and our use of 3D printing which is a rapidly expanding technology, we have
determined that our company is feasible as well as highly profitable.
9|Page
2.0 Background
Our project goal is to propose a solution to the overall fit and comfort of the modern
earbud, developing an earbud that is uniquely custom fit to each individual’s ear canal. In order
to create such a product, we researched the information necessary to start our own company,
EarThotix. In this chapter, we will discuss the current devices and methods of 3D printing, the
major areas in biomedicine where 3D printing is currently used, and background on the
headphone market.
2.1 3D Printing Devices and Methods
3D printing is a technology which utilizes methods of additive manufacturing to produce
a part or product. Additive manufacturing (AM) is a term used interchangeably with 3D printing,
and is defined as “the process of joining materials to make objects from 3D model data, usually
layer upon layer, as opposed to subtractive manufacturing methodologies” (Wohler). Additive
processes are able to produce products which minimize waste in the form of both materials and
time. 3D printing is possible with several unique approaches, though they all share the common
thread of building up the part one layer at a time. The materials commonly used include
filaments, liquids, or powders which are heated or chemically treated in order to fuse together.
Mainstream 3D printing technologies include fused deposition modeling, stereo-lithography,
laser sintering, and polyjet 3D printing. It should be noted that there a numerous methods of 3D
printing, which utilize countless devices and material combinations. Explaining each of these
slightly differentiated technologies is unnecessary as they do not directly relate to our product.
All of these technologies rely on an accurate digital 3D model in the form of a CAD file, which
can be generated using a modeling program, or a 3D scanning technology (PC Mag, 2013).
10 | P a g e
The earliest form of 3D printing is the extrusion method utilized by fused deposition
modeling (FDM). In this method, strands of plastic referred to as filament are heated and
extruded to form the individual layers of the 3d printed object. Each strand of filament is known
as a road once it has been extruded and laid down in parallel with the existing roads. These
structural units allow for variation in the pattern of roads, and affect the final texture, shape,
strength, and volume of filament needed to complete the object. FDM is utilized primarily on a
smaller scale, as larger prints are very time consuming, and the size of the object depends on the
size of the printer itself. For this reason, FDM is favored for rapid prototyping and construction
of functional models (PC Mag, 2013).
Stereo-lithography (SLA) relies on a liquid polymer which is photo-reactive, meaning it
hardens when exposed to the correct wavelength of light. The first layer of polymer which is
solidified will be the bottom of the object, and the structure is built up as the platform lowers into
a vat of liquid polymer. The second layer will be hardened directly on top of the first, and then
descend under the surface of the liquid so the next layer may be built upon the last. Hardening of
the polymer is normally achieved by laser, with a mounting and track similar in structure to a
modern desktop printer. The track allows the laser to trace the 2d shape into the polymer and
harden it before the platform automatically lowers. A slightly varied method of stereolithography utilizes a digital light projection system rather than a laser for the curing of the liquid
polymer. This alternative can harden an entire 2d layer of resin at a time, directing light to the
correct areas and deflecting light away from areas which must remain liquid. This method is used
in similar situations as the FDM approach like rapid prototyping and scale model creation. SLA
provides a higher degree of detail and allows for a more professional final product, so it may be
utilized for a more customer facing product, or a more complex model than can be created by
11 | P a g e
FDM. It is rare for an object created by FDM or SLA to be utilized as a functional component
(PC Mag, 2013).
Selective Laser Sintering (SLS) utilizes powdered materials including polymers, metals,
and composites as a structural unit, binding together the individual grains with the heat of a laser.
The object is built from the bottom up, with each individual layer of powder applied after
binding has taken place. Many different materials may be utilized, requiring a tuned laser for the
correct amount of heat and energy to ensure proper melting and bonding of the individual
particles. Subdivisions of SLS printing include solid state sintering, chemically induced binding,
and liquid phase sintering. The lasers employed in most SLS systems must be considerably more
powerful than any other lasers used in 3d printing, as the process requires full melting rather than
activation of a reaction. SLA is very effective for creating functional components, but it is not
scalable for large scale production. It is more likely that a small and specific unit be created for a
special order by SLA than for generic and mass-produced items (PC Mag, 2013).
PolyjetTM technology is similar in concept to modern inkjet printing of text, images, and
documents. Rather than printing words or diagrams onto paper, the PolyjetTM printers “jet layers
of liquid photopolymer onto a build tray and cure them with UV light” (Stratasys, 2013).
Stratasys PolyjetTM 3D printers are capable of blending polymers during production resulting in
an unrivaled control of final product properties. PolyjetTM technology supports one of the most
diverse selections of materials for model creation, organized into 9 families and containing over
90 unique materials. Properties such as opacity, density, durometer, and flexibility may all be
fine-tuned through unique combination of digital polymers to create the desired physical and
mechanical makeup required. For prototyping, this is an advantageous trait, and for end product
development, it serves as a viable option for specific applications. PolyjetTM technology represents
12 | P a g e
a cutting edge process which is proven effective for complex prototyping and due to its wide
range of possible materials it is capable of producing products for end use roles (Stratasys,
2013).
The Lantos Technologies 3D ear canal scanner represents an extremely viable tool for
accelerating and simplifying the ear molding process. An accurate impression of the ear is
essential in order to produce a properly fitting in-ear device of any sort. The current method of
imprinting the ear is somewhat archaic, involving injection of a liquid resin based material into
the ear and allowing for a curing time of up to 10 minutes per ear. In order to have these
impressions made, either an audiologist or a home kit is required. The Lantos 3D scanner uses a
“conforming membrane” which is gradually filled with an “absorbing medium” which swells to
make contact with the ear canal (Lantos, 2013). Once the membrane is in contact with the full
ear canal, a sensor inside retracts and records hundreds of two dimensional readings. These
individual images are constructed based on the distance of the membrane from the sensing rod,
creating a very accurate 3D image. The process requires a mere 60 seconds, and automatically
generates the proper file type for manufacture of a custom in ear device (Lantos 2013).
The current state of 3D printing technology and applications has been described as the
peak of the inflated expectations curve of technology adoption. There is an abundance of media
coverage and so called “hype” about the technology, and stories of 3D printing success stories
are very hopeful in their reporting. A positive indicator of 3D printing industry growth was
highlighted in a scienceprogress.org article in the “new pilot program to create an institute for
public-private collaboration and innovation in additive manufacturing” which the Obama
administration has publicly backed. Federal investment in applied research through collaboration
among industry professionals, research universities, and nonprofit organizations will
13 | P a g e
undoubtedly lead the market in a positive direction and spur acceptance of the relatively
underutilized technology. Aside from massive research initiatives, the 3D printing market has
given birth to an online community which hosts files, shares experiences, and promotes
innovation, both through at home tinkering and numerous sponsored innovation and business
plan competitions. Practical 3D printing applications which are employed today are primarily
focused in the rapid prototyping industry, where objects which are printed are used for
demonstration or modeling more than becoming an end use item.
This trend is beginning to change as at home 3D printer kits become more inexpensive,
and group funded initiatives like Kickstarter begin to offer an ever more diverse range of
hardware for the at home segment. Successfully funded 3D printing projects from Kickstarter
include the Formlabs Form1, funded almost $3 million after setting a fundraising goal of only
$100,000 , the Cartesian EX1 , and the Pirate3D Buccaneer, all marketed as affordable desktop
3D printers designed for the end user. This overwhelming crowd funding demonstrates how
ready consumers are to consider 3D printed products as unique and desirable. The continued
development of 3D printing applications and market readiness point to growth and innovation
opportunity within the market (Formlabs, 2012).
2.2 3D Printing in Biomedical Engineering
Currently, 3D printing is used in a variety of different fields, ranging from medical and
manufacturing to fashion, sports and even food. As technology progresses and the demand for
custom products increases, experts continue their research concerning the capabilities of this
device. Their advancements and discoveries about this science reveal more and more the
limitless possibilities of 3D printing. This is particularly true in the biomedical industry where
3D printing is being utilized to create custom parts for the individual such as bones, dental
14 | P a g e
toothbrushes and crowns, prosthetics, casts, hearing aids and living tissues to name a few.
Biomedicine holds vast potential for the growth of 3D printing as it can offer a way to heal the
human body faster and more effectively.
2.2.1 Bones
“3D printing has grown from a niche manufacturing process to a $2.7 billion industry” in
just 20 years… (Doyle, 2013). Scientists are working towards 3D printing live cells, which have
proven to be possible with certain advanced printers. Bones comprised of a patient’s own cells
can be 3D printed. An image of a defect in the bone structure of a patient can be fed into a
computer which then 3D prints a replacement that fills the defect. MIT researchers are also
working towards discovering ways in which “durable, lightweight, and environmentally
sustainable” artificial bones can be 3D printed. Bones which are broken can also be repaired
using a specific 3D printing and x-ray scanning method, which creates a breathable and ultralightweight nylon exoskeleton-type sleeve that functions to protect the broken bone with a
custom fit and superior support (Doyle, 2013).
2.2.2 Dental
3D printing is also used in the dental industry, for teeth replacements, crowns, bridges,
fillings as well as toothbrushes. Priced around $75-$200, the Blizzident is a 3D printed
toothbrush, custom fit to a person’s mouth that can clean teeth in less than 7 seconds. A person
simply bites down on a 3D mold of their mouth, similar to a mouth guard, and grinds on the 600
bristles that line the toothbrush. The process behind this device is that the dentist first takes an
impression of the person’s teeth which is then next sent to a laboratory that scans the impression
and creates a digital 3D model, ready for the patient to use (Blizzident, 2012).
15 | P a g e
2.2.3 Prosthetics
3D printing can also be used to create prosthetics and parts of the human face. For around
$2439-$5000, there is currently a process in London where a patient’s face is 3D scanned and
“specific contours then are added to a digital model of the new prosthetic part to create a perfect
fit” (Wainwright, O, 2013). The parts are printed in starch powder and full color and then
vacuum-infiltrated with medical grade silicone. This technology allows a person to scan any part
of their face, whether a nose, forehead or ear for example and replicate it for facial prostheses.
Artificial limbs can be created through consumer-grade 3D plastic printers in
approximately 6 hours and for less than $100. These limbs are created using low-cost in order to
be available at an affordable price to people who are suffering from missing limbs. The downside
to these limbs however are that they have limited flexibility, control, strength and need certain
attachments in order to carry-out ordinary tasks such as eating, and thus do not provide the
perfect solution to the patient (McCracken, H, 2014).
2.2.4 Casts
Customizable casts are now possible with the help of 3D printing. The prototype Cortex
cast is an example of this technology. Very similar in structure to bone tissue, the Cortex is light,
comfortable, inexpensive, waterproof and has a personalized tailored honeycomb foundation.
The cast is custom made to each patient and according to the area of their injury in order to offer
them the greatest support and most comfort during healing. The method behind the cast is as
follows: first an x-ray is taken of the patient’s bone in order to identify the area of the break.
Next, a 3D scan is taken of the patient for customized dimension. And last, the dimensions and
data from the x-ray and scan are sent over to a computer program where the cast is then created
for the patient (Gologowski, N, 2013).
16 | P a g e
2.2.5 Hearing Aids
3D printing is also now commonly utilized in the hearing aid market to create
customizable, fitted hearing aids. Business Insider claimed that “more than 90% of all hearing
aid shells today are produced through the process [of 3D printing]” (Wile, R, 2013). There are
numerous companies using 3D printing to create customizable hearing aids. As an example, one
Danish Company, Widex, has created a certain method, CAMISHA that creates the world’s
smallest hearing aids. This process is used “throughout the hearing aid industry for 95% of all
custom hearing aids” (3Ders, 2013). For around $1000-$3000 CAMISHA inserts liquid silicone
into the ear of the patient, creating an impression of the ear canal which can then be scanned into
a computer program, converting the scan into a 3D image. After this process, a fitted plastic ear
shell is then created out of acrylic from the scan where the micro-circuitry of the hearing aid is
then inserted into the product and given to the customer (3Ders, 2013).
2.2.6 Tissue
The ability to print living human tissue and organs is also being heavily researched by
scientists. These machines have already successfully experimented with making bioartificial
cartilage in cow tissue. In order to create and print living tissue, the 3D bio-printers would print
cells in either a liquid or a gel. The possibility of being able to ‘print on demand’ a live organ,
such as a heart, is something scientists and researchers have been striving towards for the future.
Laboratories in Germany have been experimenting printing sheets of heart cells and skin cells
that could potentially be used to repair damage caused by a heart attack (Fountain, 2013).
Research is also underway to create a synthetic 3D printed skin that “can be matched to a
patient based on his or her age, gender and ethnicity…custom tailored skin that would mirror the
bumps, crinkles , veins and tones found elsewhere on a patient’s body” (Maxey, 2013). This
17 | P a g e
research is based on a 3D imaging and skin modeling program that essentially would scan a
person’s skin, creating an image that could be embedded into a 3D skin profile where the custom
skin would be accurately printed. Eye tissue is also being heavily researched as scientists for the
first time ever have 3D printed living central nervous system retina cells using lab rats and an
inkjet printer. This invention could revolutionize biomedicine as it holds a potential cure for
blindness and can be used for other eye surgical purposes. The researchers behind this study
believe that “this process will be capable of 3D printing retinal grafts tailored for individual
patients… [As well as] leading to other neural repair surgeries, possibly even including damaged
nerve cells and spinal cord injuries.” (Druce-McFadden, 2013). With these breakthrough
advancements in 3D bioprinting, it will not be long before perfect individualized bones, tissues
and organs are available to every patient. Much more research has to be done in the field of 3D
printing living tissue and skin, but this technology is evolving and growing fast, presenting
endless and exciting possibilities in not only biomedicine but any other field imaginable.
2.3 Headphone Market
2.3.1 Problem in the Market
The worldwide headphone market is now a 1.5 billion dollar industry, and is growing at
an annual rate of 7.0%. There is a variety of different style of headphones available in the
marketplace today, and the most popular of all headphone styles is ear buds, which are designed
to fit inside the consumers’ ears to provide superior audio quality, as well as convenience. While
this style of headphone is extremely popular, it does not come without major flaws. Consumers
have long griped about finding the perfect fit for in-ear buds, as even the most popular of ear
buds have trouble staying comfortably in consumers’ ears. This is especially true with active
consumers such as athletes, who use headphones while training or performing in athletic events.
18 | P a g e
With this added movement, traditional ear buds tend to fall out of the consumers’ ears, and do
not provide the consumer with an interruption-free listening experience. With research compiled
from various sources, it has been confirmed that consumers are still facing this issue, even with
more and more new ear buds being released by major companies every quarter. This leaves the
door open for a different solution to meet the needs of headphone consumers (Lerman, 2014).
2.3.2 Overview of the Headphone Market
The worldwide headphone market is now a 1.5 Billion dollar industry. From 2008- 2013,
there was an annual growth rate of 7.0% in this market. The projected growth for 2013-2018 is
1.1%. As the headphone market currently stands, there are 78, 072 enterprises in the business of
manufacturing and/or selling headphones, but there are no major players in this industry with a
significant portion of the market share. The headphone life cycle stage is mature according to,
which contributes to why the growth is expected to slow within the next five years. In terms of
methods of sale, e-commerce is huge for this market. Because people buy headphones generally
to use with consumer electronic devices, the e-commerce sales for this market are vital. In 2013,
around 50% of sales were through e-commerce retailers for headphones. Headphone purchases
are also considered to be discretionary spending because they are not vital items. Over the next
five years, consumers are expected to be purchasing more expensive, high-end headphones, as
consumer per capita disposable income is expected to increase. (Lerman, 2014).
This leads into an emerging segment of the headphone market, the high-end or luxury
headphone market. As the NPD research group notes, the premium headphone market is defined
as the market segment that includes headphones with a price of $100 or more. This market
segment has grown substantially in 2012-2013, and currently makes up 43% of all headphone
sales (NPD). The premium headphone market was always in existence, however it was a niche
19 | P a g e
market that only appealed to consumers who were musicians, music producers, and
“audiophiles,” people who need the highest quality audio output. As the overall headphone
market matures, this premium headphone market has grown. More and more consumers are
valuing sound quality when shopping for headphones, with 73% of consumers stating the
greatest determining factor was sound quality. The leaders in this market segment are Beats by
Dre and Skullcandy, who largely offer over the ear headphones that are marketed as having
superior audio quality and superior style as their main points of their value proposition.
There are many different types of headphones available on the market today. In-ear “buds”, over
the ear, behind the neck, wireless, and gaming headphones make up what is available to
consumers today. The largest two in terms of market share of these different types of headphones
are in-ear buds (54%) and over the ear headphones (24%). With all types of headphones, the
market is largely e-commerce driven. Sales from electronic retailers are critical to this market,
largely due to the fact that most consumers are purchasing headphones for their internetconnected personal electronic devices, such as their personal computers, smartphones, and
tablets. E-commerce sales represent about 50% of all headphone sales in 2013. The number of
overall retailers in the market is expected to grow 6.5% annually, as smartphone, tablet, and
computer sales continue to rise, driving the demand for headphones higher (Lerman, 2013),
(O’Connor, 2012).
In terms of target demographics, 39.5% of headphone consumers are of age 35-54, 17.3%
are of age 25-34, and 13.2% are under the age of 24. Headphone consumers can be further
classified into different behavioral segments. Lead users for headphones are generally classified
as “audiophiles,” meaning any person who values audio quality above all other features, and is
willing to pay upwards of $100. These are the consumers who are driving the premium
20 | P a g e
headphone market. Other significant segments are athletes, who tend to purchase headphones
based on their design, as they require well-designed headphones that allow the user to move
about without interruption. Another significant segment is gamers, who use headphones with
their video game systems or personal computers.
2.3.3 Basic Info on How Headphones are Traditionally Made
There are a few different industry-wide methods for making headphones, as well as a
wide array of choices for manufacturers when it comes to materials. The choice of materials
largely depends on the target market, as higher quality materials are generally required to satisfy
the needs of the premium headphone market. For in-ear buds, the typical materials list consists of
pre-molded plastic, carbon polymers, gel cups, and metal components for the sound system. In
higher-quality headphones, manufacturers may turn to thicker wiring systems, gold-plated
components for a more secure fit, and noise cancelling electronics. The sound producing system
traditionally consists of a small dynamic driver and magnets (Lacoma, 2012).
2.3.4 Example of 3D Printing in the Current Market
The headphone industry is slowly starting to adopt 3D printing. A direct competitor to
our proposed solution is “Accord Ear Buds” by Julian Goulding (3D Printing Industry). These
ear buds are the same basic concept as our solution, offering 3D printed ear buds that are
designed to fit perfectly in the consumer’s ear. A significant detail about Julian Goulding’s ear
buds is the process in which the consumer is fitted and receives his/her ear buds. The consumer
is faced with the choice to buy a molding kit, mold their ear, and send the kit to the company, or
they can have their ears molded professionally by an audiologist. It is worth noting that as of
December, 2013, the product is not in production, and Julian Goulding plans to start producing
these headphones in early 2014 (Accord, 2013).
21 | P a g e
2.3.5 Why We Chose the Headphone Market
We chose to bring 3D printing into the headphone market for a variety of reasons. We
believe there is a significant market need, as established through researching competition as well
as consumer opinions throughout the whole headphone market. It has been established that many
consumers feel as though their in-ear buds do not fit them properly, and it causes discomfort as
well as having a significant negative impact on their listening experience. In thinking of a
solution to this problem, we believe using a combination of 3D scanning and 3D printing to
create custom covers for consumers’ favorite headphones would solve this market need in a
feasible manner. The headphone market is also conducive to e-commerce companies, with
roughly half of all headphone sales in 2013 coming from online retailers. We also believe the
headphone market would be a smart market to dip into because of the solution at hand. With
manufacturing customized covers for current earbuds, we have created a solution that is feasible
and within reach for our project timeline.
22 | P a g e
3.0 Methodology
The main research goals of the project were to, first, determine the best 3D printer
technology and material suited for our company’s purpose; second, conduct market research in
order to define our market niche and the distinctiveness of our product; third, attain expert advice
regarding 3D printing and intellectual property; and fourth, develop a business plan proposal in
order to estimate the profitability and success of our company. In order to accomplish these
goals, we identified the following methodology objectives to serve as a basis for our research.
1. Investigate the current devices, processes, and materials of 3D printing
2. Research current and developing competition and target market
3. Conduct Interviews
4. Compose a Business Plan
To help us achieve these objectives and gain the information needed, we employed a
variety of research methods such as interviews, public surveys, online research, and literature
review of relevant and professional sources. This chapter explains our methodology in detail and
is organized according to each objective.
3.1 Investigate the Current Devices, Processes, and Materials of 3D Printing
Our goal is to identify and classify the modern leading 3D printer types by their market
presence, their method of printing, and the range of materials available as the structural
component of the final product. Discovery of devices with greater flexibility in terms of process
and materials is a priority, as the selection of a proper device for our business should be made
from the most complete range of competent devices possible.
23 | P a g e
3.1.1 Scholarly Reports on 3D Printing Methods
Major categories of 3D printers unrelated to brand and material must be acquired first
from various scholarly sources used to educate students about 3D printing. This research will
define the primary categories of 3D printers based on the technology which is utilized and the
process which is carried out. Next, the useable materials for each 3D printing technology will be
defined, as the final product’s physical and chemical properties will determine the behavior of
the final product.
3.1.2 Technology and Business News Articles
Breaking articles published on various technology oriented news sites will illuminate the
new and popular 3D devices which are either being released or are being utilized successfully.
These news sites may lack hard data and specifications, but they will give an idea of which
industries are taking advantage of which processes and materials for their production. These
articles on news sites are a great resource for identification of market trends, technology
acceptance, successful implementation, as well as which 3D companies are rising and gaining
recognition. The companies identified in this article will become a resource for the more in depth
data necessary for making educated decisions about the proper device for our project.
3.1.3 Market Leaders’ Websites and Personnel
Once viable brands have been identified utilizing news articles and tech columns, their
company website will become a valuable resource for more technical information. Data on
specific models of 3D printer will be collected in order to determine the best speed, size, process,
and material needed to accomplish our product plan. This data can be found using buyer guides,
specification sheets for devices, or technical material guides. Other information will be collected
24 | P a g e
from company websites and personnel though a Q&A or information request process, and will
include pricing information as well as details not available on the website.
3.2 Research Current and Developing Competition and Target Market
Our objective was to perform research on two fronts of the headphone market. First to
research the industry as a whole, and then to research specific companies and/or products. This
will help us find the market need, and in turn, help us eventually result in us finding the market
solution. We used models and methods recommended by both Professor Hoy and Professor
Mendoza.
3.2.1 Industry Research
To find information about the headphone industry as a whole, we will use library
databases to discover key statistics about the headphone market. These statistics will include but
not be limited to: market share by company, industry-wide revenues, growth trends, and sales
methods. A specific finding will be to discover who the industry leaders are, what sort of
products they offer, and how they are perceived by their customers.
3.2.2 Market Research
Market research will be conducted using the “Market Segmentation Worksheet” provided
by Professor Mendoza. This worksheet will allow us to narrow our focus on exactly what kind of
headphone consumer we will be appealing to and targeting. We will find out what percentage of
headphones sold are “ear bud” style, what types of people buy headphones, how much they are
willing to spend. We will also survey WPI athletes to learn more about their views on using ear
buds in an active setting, and we will be asking them how well their current headphones fit
during athletic activity.
25 | P a g e
3.2.3 Consumer Reports
After finding the industry leaders, we will research exactly how their customers feel
about their products, by using tools such as Consumer Reports and Amazon Reviews, as well as
blogs and social media trends. Ideally this will lead us to confirm our hypothesis that there is a
significant need in the headphone market for ear buds that fit consumers’ ears perfectly. If
proved correct, we will find how large the problem is, and whether our target market is closer to
being everyone with ear bud headphones, or more of a niche market, such as athletes who use ear
bud headphones.
3.2.4 Initiate an On-Campus Survey
We plan to develop and implement an on-campus survey that will be sent out to both
faculty and undergraduate students at WPI. When developing the types of questions, we want to
ask survey responders about their current pair of headphones, with questions about brand,
headphone style, and their satisfaction with their current set of headphones in terms of audio
quality, fit, and design, and how much they paid. We also want to know about how and when
they use their headphones, as well as how much they would pay to improve the fit of their
current set of ear buds. This information will help us determine the market need further, as well
as give us key information regarding how people use their headphones, and what features they
value most.
3.2.5 Potential Customer Conversation
Identifying the specific needs of our potential customers may be deduced from our
survey, but the most reliable way to gauge the customer’s emotion and acceptance of the product
is through face to face discussion. Each of the group members will share the EarThotix solution
with friends, classmates, colleagues, or anyone they believe could benefit from a custom earbud
26 | P a g e
cover. Our goal is to gather first hand recommendations and feedback from a diverse and honest
group of individuals.
3.2.6 Determine how research results will be incorporated into business plan.
These research results will likely have major impacts on our business plan. The size of
our business will depend on the size of both the headphone industry as well as the percentage of
ear bud consumers who are dissatisfied with the fit of their current headphones. This market
research will also help us confirm or pivot on which type of headphone we will be targeting first.
We believe there to be significant problems with Apple earbuds, and if our market research
supports this, we will move forward targeting these types of headphones.
3.3 Conduct Interviews
Throughout our research process, we want to pair all the above research with interviews
with professionals in the field who can give us useful tips and information. We will reach out to
professionals with backgrounds in Intellectual Property and 3D Printing.
3.3.1 Intellectual Property Professional Interview
We plan on asking which processes in our business plan would be eligible for some form
of Intellectual Property protection. We would also like to know things such as cost and process
involved in order to protect our eligible assets. Another question we will ask is if it is a viable
option or necessity for start-ups to hire a lawyer who specializes in intellectual property, and if
that would be a better decision than attempting to undertake the process ourselves.
3.3.2 3D Printing Expert Interview
When interviewing a 3D Printing expert, we first want to ask general questions based on
cost. This includes an estimate for the cost of the Stratasys Printer itself, material cost, and
27 | P a g e
maintenance. Expanding further, we would like to know what sort of packages and/or warranties
Stratasys offers and how potential problems with the printer will be handled. Determining these
costs will help us better understand our financial situation, and learning how the maintenance is
handled will help us better understand how our business will be able to handle these problems
down the road, should they appear. Another challenge which we wish to address is the overall
feasibility of printing the earbuds from both a mechanical and operational standpoint.
3.4 Compose a Business Plan
Our objective was to create a practical and well-thought out business plan that was best
suited towards our company, our mission and our goals. In order to gain the information
necessary for our plan, we utilized various business models and tools, studied several business
plan templates and thoroughly researched different business strategies after investigating our
target market, potential customers and current competitors. The deliverable of this research will
ultimately help us determine whether our company will prove to be both feasible and profitable.
3.4.1 Business Model Canvas and SWOT
The first step to composing the business plan was to gain a general and visual
understanding of some of the specifics of our business itself, such as market, customers, products
and competitors. In order to accomplish this, we completed a Business Model Canvas and the
SWOT analysis. Developing these models enabled us to clearly list the specifics of our business
and recognize all opportunities and challenges that our company could potentially face. The
information in these models acted as the foundation and starting point for our business plan.
28 | P a g e
3.4.2 Plan Template Research
The team was assisted by Professor Hoy and Professor Mendoza who provided us with a
variety of professional business plan templates. We thoroughly reviewed all of the business plan
examples, and were able to formulate criteria to incorporate in our plan that would correspond
with our overall company structure and vision. The team then began in-depth research of the
market, possible business strategies, operational structures and financial analysis tools.
3.4.3 Determining Business Strategies
In order to determine the best suitable business strategies for our company, we utilized
several resource methods. First, we used the book Case in Point, by Marc P. Cosentino, which
presented us with valuable information in regards to different companies pricing, growth,
financial, industry and competitive strategies. This provided us with a solid foundation for
selecting the different strategy paths we were looking to take as a startup company. We also
utilized the WPI library database to find articles in the business databases (Business Insights:
Essentials; Business Source Premier) relating to different marketing, distribution and pricing
strategies new companies undertook. We then analyzed the benefits and costs of seeking
assistance from online marketing software company, such as Hub Spot, to help our idea reach
our target market. We investigated possible methods using social media, newspapers, and local
gyms to advertise our products. We also explored the pros and cons of different investor groups,
to help kick-start our idea and provide early financial help and funding for our company. And
finally, we also strategically priced our products and located our stores based on the research we
had completed in our target market sector.
29 | P a g e
4.0 Findings and Analysis
4.1 Devices, Processes, and Material
After thorough exploration into the viable options for 3D printing devices, processes, and
materials, a specific system and combination of resources has been determined which will
maximize our potential for creating the best end user product. The 3D printing technology which
suits our requirements best is the Polyjet technology offered by Stratasys. There are several
devices which are able to utilize the Polyjet technology, ranging in size of print area,
quality/speed of print, and the availability of compatible materials. Generally, the larger and the
higher resolution a 3D printer from Stratasys is, the more expensive it is. Our team decided to
utilize the smallest possible printer in the class of devices which may utilize Polyjet technology
in order to minimize costs.
For our purposes, we have determine the Stratasys Objet Eden 260V from their design
series. This printer offers the optimal combination of size, print quality, and most importantly, it
supports printing with the specific biocompatible material which must be utilized for a product
which is in constant contact with the customer’s skin. The material which we have chosen based
on 3D printing expert opinion as well as thorough headphone and 3D printer market research is
the Stratasys Bio-compatible Polyjet photopolymer (MED610). This is a rigid opaque material
which is rated for prolonged skin contact. MED610 has passed five different medical
requirements or biocompatible materials, including “cytotoxicity, genotoxicity, delayed type
hypersensitivity, irritation and USP plastic class VI” which ensure that the final product will not
be cause to irritation or toxicity to the customer. This material is exclusively created and sold by
Stratasys for the Objet Eden and Objet Connex Polyjet 3D printers. Our research has led us to
30 | P a g e
discover the price point of $1,260 for 3.6 Kg, or $3,630 for 10.8 Kg of MED610 Bio-Compatible
Polyjet photopolymer.
In our search for a viable in-ear scanning device to match the speed and modernism of
our 3D printer, our team discovered the AURA 3D Ear Scanning System by Lantos. It is a brand
new technology which has only become commercially available in the past few weeks. This
device offers unrivaled speed and ease of use for the operator, as well as maximizes comfort for
the customer. This device is capable of taking a full deep-canal scan of the customer in less than
1 minute per ear. Without the need for any putties or polymers to be inserted in the ear and
allowed to cure for model creation, the AURA is a much faster and more convenient process
compared with current practices. Once the canal has been scanned, the AURA sends a full 3D
image in the form of a CAD file to whichever computer it is connected to via USB cable. This
file type is compatible with the Objet Eden, and will minimize the amount of processing and
preparation needed for the development from scan to print.
The overall process from customer acquisition to product delivery should be as seamless
and painless as possible. Based on our selection of technologies and determination of operational
requirements, we believe this requirement to be met. First, the customer will receive a free in-ear
scan, and be explained how their ear canals measure up to our Degree of Fit Index. After the sale
has been finalized, the 3D scans of the customer’s canal will be forwarded to the 3D printer.
Once a sufficient number of orders are met to fill the base of the printing tray, the additive
process will begin. After printing has been completed, the customer may elect to pick up their
earbud cover in store, or utilize a free 2 day shipping service to their residence.
31 | P a g e
4.2 Market Need
4.2.1 Survey Results
In C-Term, we conducted a survey that was sent to all undergraduates at WPI, as well as
faculty and close friends of the project group. This survey was designed to serve the purpose of
market research, and what we learned from it greatly impacted the business plan for EarThotix.
Our survey was focused on gaining information about headphone use. Our questions covered
basic demographics, questions about users’ current pair of headphones, and questions on how
people use their headphones.
Basic Demographic Questions:
What is Your Age?
Figure 1: Age Survey Question
What is your WPI Affiliation?
Figure 2: WPI Affiliation Survey Question
32 | P a g e
These questions were designed as a benchmark for us to understand basic information
about who answered our survey. From the responses, 93% of responders were between the ages
of 18-24, and 91% were undergraduate students at WPI. With this information, we were able to
understand our target market moving forward, and it put the rest of the responses in perspective.
Gaining insights on the target demographic of 18-24 year olds is vital for our business, as we are
positioning our product at “first-mover” innovative types, who are typically in college or have
recently graduated.
Product Questions:
What Style of Headphones Do you Currently Use the Most?
Figure 3: Headphone Style Survey Question
From the survey data, we found that 64% of people said they use in-ear headphone buds
the most. Over the ear headphones was the second most popular style, with 29% of people. This
was valuable information for us because it shows that in-ear headphones are still the majority
ruler in the headphone market. Even with the recent surge of over the ear, premium headphones,
in-ear buds are still the most popular by a fairly wide margin in our survey. We saw that these
numbers were very similar to the industry averages seen below for the headphone market in
America in 2013 according to IBISWorld. This validated our product as being a solution for the
most popular headphone style.
33 | P a g e
Figure 4: Industry Averages for Styles of Headphones Sold in 2013 (IBISWorld, 2013)
What Feature do you Value the Most in Shopping for Headphones?
Figure 5: Highest Feature Value Survey Question
Here, we learned how consumer’s value different headphone features while shopping and
comparing brands. From the data, we saw that the second most important factor was headphone
fit, with an average score of 1.85 on a scale from 1-4, with “1” meaning it was the most
important factor, and “4” meaning it was the least important factor. Overall, the most important
quality on average was audio quality. This told us that in our targeted survey, our responders put
headphone fit extremely high on their list of product features that they look for. Next, we wanted
to ask how satisfied consumers were with their current pair of headphones.
34 | P a g e
How Satisfied are you With the Comfort and Fit of your Current Headphones?
Figure 6: Comfort and Fit Survey Question
Here, we wanted to understand how consumers feel about the fit and comfort of their
headphones that they currently own. From the data, the average response on a scale from 1-5,
with “1” being very dissatisfied, “2” being dissatisfied, “3” being neutral, “4” being satisfied,
and “5” being very satisfied, the average responses for comfort and fit were 3.94 and 3.95,
respectively. This equates to most people saying they were “satisfied” with the current comfort
and fit of their headphones. We want to target everyone who responded with “very dissatisfied”
to “satisfied” with their current fit of their headphones, because our product is designed to make
everybody move into the “very satisfied” category. This equates to 458 responders out of 665 for
the question of fit, telling us we have a market large enough to target and to become a successful
business.
Use Questions:
We also wanted to gain insight on how people use their headphones. This information
would allow us to better tailor our product to fit their needs and to fit into their lifestyles.
35 | P a g e
When Are You Most Likely to Use Your Headphones? Select All That Apply
Figure 7: Headphone Use Survey Question
Here, we wanted to know when people were most likely to use their headphones. From
the data, we can conclude that most people in our survey use headphones while studying in a
quiet room and while exercising. This was extremely important data for us, as we believe our
product will fit the needs of the athlete market segment extremely well. In ear buds are more
likely to fall out while exercising simply because the user is moving around more than if they are
studying sitting down in a quiet room. This allows EarThotix to become the solution for athletes
who enjoy using in-ear buds. This information allows us to move forward targeting athletes in
our marketing and in our product positioning.
How Often Do Your Earbuds Fall Off During Use?
Figure 8: Earbuds Falling Out During Use Survey Question
In this question, we wanted to understand how often people’s current pair of in-ear buds
fall out of their ears during use. From the data, we see that 351 responders out of 665, or about
53%, stated their pair of in-ear buds fall out sometimes, often, or all the time. This is roughly half
of the headphone market we want to target, and it validated for us that headphone users
36 | P a g e
experience the problem of in-ear buds falling out during use, and interrupting both their musical
experience as well as their activity.
How Much Would You Be Willing to Pay to Improve the Fit of Your Current Headphones?
Figure 9: Price Willing to Pay to Improve Headphone Fit Survey Question
The final question we asked about headphone use was a straightforward question that
asked how much people would be willing to pay to improve the fit of their current pair of
headphones. We were encouraged to see that the majority of people would pay less than $50.
This was encouraging because the survey responders did not have any inclination as to our
product or the value our product can provide them, so having a baseline understanding that the
consumer would in fact be willing to pay to improve the fit of their headphones is encouraging.
This impacted our business plan greatly, as we set a price point for our base model Midas at
$50.00, and the price of our higher-end model, Apollo, at $75.00 per set in year one. We believe
that once the consumer understands our value proposition of our product, they will see the value
and be willing to pay the respective prices. This means that it is up to our marketing to
communicate this value proposition to our consumers.
Overall, our survey and survey results were a valuable asset in allowing us to form our
business plan. We gained knowledge and understanding of WPI students and faculty as to their
preferences on different aspects of buying and using headphones.
37 | P a g e
4.3 Current and Developing Competition in our Target Market
As previously stated, the headphone market does not have any major players who hold
significantly more market share than other competitors. The biggest companies in the headphone
market by market share are Skullcandy, Bose, Sony, Harman International, and Beats by Dre.
For direct competitor analysis, we chose Skullcandy, due to their customizable offerings and
similar focus on ear buds (Lerman, 2014).
One of Skullcandy’s biggest value propositions for their headphones is customizability.
They offer a wide variety of ear buds, ranging from different sizes, color themes, and quality
levels. They also offer a wide range of products from low end (~$10), to high end, dipping into
the premium headphone market. Skullcandy enjoyed very strong growth in 2012, with their
revenue growing at an annual rate of 28.05% during that year, compared to the industry median
of 6.36% (Hoover’s, 2013). In terms of market segmentation, Skullcandy appeals to a wide range
of consumers. They have gaming headphones for gamers, over the ear “hook” style headphones
designed for athletes, and everyday ear buds for the regular electronics user. What greatly
contributed to their growth in 2012, however, was their emergence in the premium headphone
market. In the headphone market, the most extreme users are typically classified as
“audiophiles,” who value audio quality higher than any other attribute of a set of headphones,
and they have shown they are willing to pay upwards of $100 for their headphones. In 2012,
Skullcandy released several new lines of over the ear headphones to compete with the market
leader in the premium headphone space, Beats by Dre, LLC (Hoover’s, 2013).
One of Skullcandy’s bestselling in-ear bud-style headphones is the S2IKDY
(Amazon.com, 2014). While this product is reviewed highly and is highly popular, we were still
able to find consumers who complained that the ear buds were not fitting their ears properly, and
38 | P a g e
this caused them to fall out. One reviewer said the ear buds felt heavy and this caused them to
fall out quite frequently, and another stated that the quality of the headphones met their
expectations, but they did not fit well in their ears (Amazon.com, 2014). This gave us
confirmation that even with one of the market leaders in in-ear headphones, consumers are still
finding issues with finding the perfect fit for their ears. And since the average Skullcandy
consumer also values customizability, we feel like designing and manufacturing 3D-printed
headphone covers for these ear buds would be a sound business decision.
4.4 Interview Results
4.4.1 3D Printing Expert Interview
In B-Term, Matthew Mulvey interviewed Erica Stults, who is the WPI 3D printing
expert. She manages several 3D printers on campus, and facilitates student and faculty utilization
of 3D printing services. The first set of questions asked pertained to costs of the Stratasys Objet
printer which is owned and operated by WPI. Erica estimated the cost to be between $150k and
$200k, but also noted that WPI bought the device when it was not commercially introduced, so
they may have paid a premium to receive the product earlier than the market. Next I inquired
about the costs of material which is used by the 3D printer to create the objects. Erica provided
me with an official Stratasys order form, listing out all available materials, and their costs in both
individual and bulk orders. This bit of information allowed us to much more accurately evaluate
our potential for profit and our true COGS. Erica then informed me about the maintenance and
care program offered by Stratasys, which included long term maintenance and repair that may be
too technical for a non Stratasys-employee to carry out. This program is estimated to cost around
$15k by Erica. Next, she led me through the process of adding filed, preparing the printing tray,
and finishing a 3D printed object. This gave me a much better idea of the logistical aspect of
39 | P a g e
printing, and shed light onto the requirements for our operations. The most promising part of the
interview was Erica’s reaction to the EarThotix pitch, and her endorsement that the product was
feasible to print using Polyjet technology.
4.4.2 Intellectual Property Interview
In C-Term, David Boroyan interviewed Natasha Aljalian, who is a patent lawyer,
currently working for a software company. The conversation started with David giving a brief
overview of EarThotix, and Ms. Aljalian was asked what sort of general things she thought
would be eligible for any sort of intellectual property. We learned that first off, our logo and
name should be trademarked. After that, our “degree of fit” index has the potential to be eligible
for some sort of utility patent. The 3D printing industry in general has hazy at best intellectual
property laws, so we learned that nothing is guaranteed, but it would be best to apply for
trademarks and/or patents as early as possible. We next moved into cost and process, which Ms.
Aljalian said we would definitely need to hire a patent lawyer to either aid us in the process parttime, or who can take care of the entire process of applying for intellectual property rights.
4.5 The Business
After much research, we have created a detailed Business Plan for our company. Within
the plan, we have developed our business concept, value propositions, goals and milestones. We
described the current and potential market and competition as well as the business strategies we
will be implementing. We further discussed the operational structure of our company and then
performed detailed financial calculations in order to make forecasted projections for our
business. From this, we determined that our company would not only be feasible but profitable
as well. The full Business Plan can be found in Appendix A of this report.
40 | P a g e
4.5.1 Business Model Canvas and SWOT analysis
Below is the completed Business Model Canvas for our company and a SWOT analysis.
These two models act as a graphical snapshot of our company and the industry and were crucial
for the formation of our overall business plan.

Potential Investors

Expand Network

Custom fit

Earbud
Manufacturing
Leader(s)

Enter start-up
competitions


Research and
Development of
products
Product specifically
designed to the
exact shape of the
customer’s ear canal

Lantos Technologies

Stratasys
Professional 3D
Printing

Purchase of
Equipment

Hire Employees

Develop Website








Existing network
Equipment
Material
Store location
Database
management
IP
Advertising
Research and Development
Renting space in mall
Salaries
Equipment
Material
Outside Services
Figure 10: Business Model Canvas
41 | P a g e
Continuous listening
experience

Reduces the chance
of earbuds falling
out

Trendy alternative
designed with
cutting-edge
technologies

Add-on feature to
current headphones.
Marketing/Advertising









Personal

Free first ear scan

Fast creation process

Customer can watch
earbuds being made
in the store on the
3D printer

Maintain customer
records of ear scan
for potential future
replacement

Storefront

Online advertising

Information can be
found on website
Our two earbud products

Anyone who owns a
set of earbuds

Unsatisfied earbud
users

Athletes

Tech Savvy/ first
movers
STRENGTHS
OPPORTUNITIES
•Custom products
•Trendy alternatives
•Utilizes 3D printing, an exciting emerging technology
•Unique manufacturing processes and creation is unmatched in
industry
•Low substitute products available in the market
•Current demand and need for our product
•No manufacturing middleman company
•Entering a pre-existing market and billion dollar industry with a
large user base
•Customization is low for top headphone retailers in target
market
•Team is motivated, eager and committed to our idea and
company
•Creating customizable products using 3D printing that have not
been made using that technology before
•Continued research, advancements, development and
innovation in 3D printing technology
•The trend of customizable products continues to grow
•An increase in active lifestyles
•Continued increase of interest in 3D printed products
•Headphone market continues to grow
•Competitors vulnerabilities
•Unfulfilled customer needs
•Potential partners
WEAKNESSES
THREATS
•Inexperience
•Lack of capital
•Low recourses
•Small staff
•New startup business with no market presence and no
reputation. Need to heavily focus on advertising and marketing
to gain recognition
•Pre-existing companies with more resources to do so adapt our
technology and enter our target market
•Buyers become suppliers
•Emergence of substitute products or substitute technologies
•Potential shifts in consumer tastes resulting in lower market
demand
•Competitors implement new strategies, innovations and
products that compete with ours
•More established and larger competitors react to us taking
away market share and alter their attention, destroying our
attained market position.
Figure 11: SWOT
4.5.2 Start-Up Competitions
Our group entered the MassChallenge Start-Up Competition after encouragement from
our advisor and attendance of a MassChallenge information session held at WPI. This will
ultimately provide us with the connections, networking, and mentorship that will help us jumpstart our company. Our group sees MassChallenge as the “start-up catalyst central,” and we
could leave the competition with a solid marketing strategy and a refined goal of our company,
as well as invaluable public exposure. We look forward to hearing from the panel of judges
regarding our application by the end of the month.
42 | P a g e
5.0 Conclusion
In conclusion, the EarThotix MQP incorporated concepts, tools, and strategies learned
throughout the Undergraduate WPI Management Engineering Program. Our initial research
regarding current technologies and biomaterials allowed us to formulate our idea into an
applicable solution. Through in-depth investigation, including collection and analysis of potential
customer and market expert opinion, we were able to determine the feasibility of our product.
Market feasibility was determined through analysis of market environment, competitor trends,
and identification of cutting edge technology which could add value to our process. We compiled
findings using tools introduced to during the WPI Management Engineering Program, such as
the Business Model Canvas, SWOT Analysis, and Porter’s Five Forces. We evaluated various
business plan templates and then composed a comprehensive business plan based on observed
strengths and weaknesses. Our next steps will be to pitch our project at a number of start-up
competitions with the goal of being accepted to an accelerator program or securing outside
investment.
43 | P a g e
6.0 References
3D Printing Definitions. (2013). PC Magazine.
3D Printing Helps Develop the World's Smallest Hearing Aid. (2013). (3Ders).
3D, T.-T. (2013). Polyjet Printer Materials. (TriTech 3D).
Accord Ear Buds- A Perfect 3D Printing Fit.
Associates, W. (2010). What is Additive Manufacturing?
Blizzident. (2012). Blizzident Tailored Toothbrush.
Comcast, I. (2014). Comcast Business
Pricing.�http://business.comcast.com/phone/business/plans-pricing:
Consumer Reviews for Skullcandy S2IKDY Earbuds (2014).
from http://www.amazon.com/Skullcandy-S2IKDY-003-Earbud-HeadphonesBlack/product-reviews/B007136EDG/ref=dp_top_cm_cr_acr_txt?showViewpoints=1
Doyle, M. (2013). The Next Big Thing in Medicine? 3D Printed Bones.
from http://www.forbes.com/sites/ptc/2013/10/31/the-next-big-thing-in-medicine-3dprinted-bones/
Druce-McFadden, C. (2013). Today's 3D Printed Eye Cells Could Someday Cure Blindness.
Dvice.com.
Facebook, I. (2014). Facebook Advertising. 2014, from
www.facebook.com/help/www/https://www.facebook.com/help/www/214319341922580
Facebook.com. Facebook Advertising
Guide. https://www.facebook.com/help/www/214319341922580:
Formlabs (2012). Form 1: An Affordable, Professional 3D Printer.
from https://www.kickstarter.com/projects/formlabs/form-1-an-affordable-professional3d-printer
Fountain, H. (2013). At the Printer, Living Tissue. New York Times [D1]. p. 2.
GlassDoor. Salaries for Customer Service
Representatives. http://www.glassdoor.com/Salary/Verizon-Customer-ServiceRepresentative-Salaries-E89_D_KO8,39.htm:
44 | P a g e
Glassdoor Salary Review: Customer Service Representative (2014).
from http://www.glassdoor.com/Salary/Verizon-Customer-Service-RepresentativeSalaries-E89_D_KO8,39.htm
Gologowski, N. (2013). Revolutionary 3-D printed cast could be the future of comfort and design. (New York Daily
News).
Gym, G. s. Gold's Gym Advertising Program. http://www.gymadvantage.com�
How Polyjet 3D Printing Works. (2013). In 3D Print Precision Prototypes in a Wide Range of
Materials. (Stratasys Inc.).
HubSpot. HubSpot Pricing. http://www.hubspot.com/��
HubSpot (2014). HubSpot
Pricing. http://services.bostonglobe.com/uploadedFiles/2007ratebook.pdf:
HubSpot Pricing. HubSpot, Inc., from http://www.hubspot.com
Instructions for Making Your Impressions for Custom Ear Plugs, Custom Ear Molds, and
Custom Earphones. (2013). pp. 8) (TM Manufacturing, Inc.).
Lacoma, T. (2012). How are Earphones Made?
Lantos Technology Overview (2013). from http://www.lantostechnologies.com/technology/
Lerman, S. (2014). The Retail Market for Headphones.
Maxey, K. (2013). Natural Looking 3D Printed Skin. Engineering.com.
McCracken, H. (2014). How a TIME Article Led to the Invention of a $100 3D Printed Artificial
Limb.
O'Connor, D. (2012). The Premium Headphone Market is Now a Billion Dollar Industry in the
US.
Pool, S. (2012). A 21st Century Approach to Manufacturing Innovation.
Skullcandy, Inc. Company Profile. (2013). Hoover's, Inc.
Technologies, L. (2012). Consumer Audio Earphones.
from http://www.lantostechnologies.com/consumer-audio-earphones/
Wainwright, O. (2013). Faces to Order: How 3D Printing is Revolutionizing Prosthetics.
45 | P a g e
Wile, R. (2013). CREDIT SUISSE: 3D Printing Is Going To Be Way Bigger Than What The 3D Printing Companies Are Saying.
(Business Insider).
46 | P a g e
Appendix A: Business Plan
47 | P a g e
Table of Contents
1.0 Executive Summary .................................................................................................................... 49
2.0 The Concept ............................................................................................................................... 50
2.1 Value Proposition .............................................................................................................................. 50
2.2 Market Need: Why The Time is Right ............................................................................................... 51
2.3 Goals.................................................................................................................................................. 51
2.4 Additional Future Products and Services .......................................................................................... 52
3.0 The Market ................................................................................................................................ 53
3.1 Market Potential for EarThotix ......................................................................................................... 53
3.2 Specific Market Segmentations ........................................................................................................ 54
3.3 Market Needs.................................................................................................................................... 55
4.0 The Competition......................................................................................................................... 57
4.1 Indirect Competition: Major Players in the Headphone Industry .................................................... 57
4.2 Direct Competition: Headphone Cover Companies .......................................................................... 58
4.3 Changes in the Industry .................................................................................................................... 58
4.4 3D Printer Industry Overview ........................................................................................................... 58
5.0 Marketing and Sales Strategy ..................................................................................................... 60
5.1 Implementing Strategy...................................................................................................................... 61
6.0 Operations ................................................................................................................................. 63
7.0 Financials ................................................................................................................................... 65
7.1 Financial Projections ......................................................................................................................... 65
7.2 Financial Projection Assumptions ..................................................................................................... 70
7.3 Company Key Milestones .................................................................................................................. 72
7.4 Risks................................................................................................................................................... 73
8.0 Feasibility................................................................................................................................... 74
48 | P a g e
1.0 Executive Summary
Business Concept
The modern earbud user is unsatisfied with the current product offering on the market. The
frequency with which earbuds become dislodged or fall out during use is a universal pain which
consumers are unhappy with. People now have access to music at any time, and they wish to
enjoy their music in any situation. EarThotix is attempting to make this wish into a reality by
eliminating the chance of your earbud improperly fitting your ear, causing it to fall out.
Current Situation
Consumers need an earbud which will not slow them down and fall out even during rigorous
activity. The primary target market for EarThotix is athletes, who complain about earbuds falling
out but also desire to use them during workouts. The current industry does have offerings which
are aimed at fitting the consumer’s ear more effectively, but none of these solutions are truly
custom fit.
Key success Factors
EarThotix offers an innovative product which is not accessible through any other means. Our
unique customer identification and product creation system allows for the only truly customized
solution for an earbud augmentation. Our “wow” factor lies in our unique utilization of 3D
polyjet technology to quickly and inexpensively create a reliable custom product.
Financial Situation/Needs
EarThotix will need funding to purchase two 3D printers, one in ear scanner, and various other
startup essentials such as staff, R&D, and a venue for customer interaction. We are currently
looking to acquire at least $500,000 in funding.
Vision Statement
EarThotix seeks to add value to even the most generic earbud and create an unprecedented
custom continuous listening experience.
Milestones
After research and analysis of the market, we have determined that reaching the following
milestones is necessary to successfully launch EarThotix from concept to reality:
1. Test process and product
2. Trademark name EarThotix, purchase online domain
3. Acquire investors and obtain needed amount of initial funding
4. Purchase equipment, material and hire necessary personnel
5. Rent desired store location
6. Launch advertising and marketing campaign
49 | P a g e
2.0 The Concept
EarThotix has developed an attachable cover using 3D printing and rapid in-ear scanning that
can be fitted over a consumer's existing in-ear headphones, or “earbuds.” On one end, it fits
perfectly over a user’s earbuds, and the other end is a 3D printed model of the consumer’s ear
canal. Our solution is specifically made for each customer and provides a superior fit that
reduces the risk of falling out during use and ultimately improves the overall listening
experience.
EarThotix will have a space located in a mall with high consumer traffic, allowing for optimal
exposure. Ideally a kiosk or smaller store front will be utilized, as minimizing rent costs will
contribute to our profit margin. The company will sell two primary ear covers; Midas and
Apollo. The difference between the two products is that Apollo will be more expensive as it will
consist of a smoother material and take longer to make.
Once at the store, an EarThotix production process consists of a technician scanning the
customer’s ear, sending that 3D computer-generated image to the 3D printer, and printing out the
custom earbud covers in-store. This process should take no longer than two hours. For
convenience, the ear scan of the customer will be saved in a secure company database for
potential returning customers.
2.1 Value Proposition
EarThotix’s mission is to deliver an earbud cover that offers an elusive perfect fit to the end user.
Every EarThotix product will be created using 3D printing technology and will be specifically
customized solely to the unique ear canal of the customer. The process behind creating an
EarThotix earbud cover is unparalleled in the headphone market today.
Continuous Listening Experience
EarThotix realizes that not every ear is the same. We know that the headphone listening
experience can be ruined, frustrating and even distracting if earbuds frequently fall out during
use. EarThotix products solve this universal problem. Every single earbud cover is specifically
designed to fit the exact ear canal of the user. This custom fit will reduce the chances of the
earbud falling out, increasing user comfort and ultimately improving the listening experience.
Reusable
As a result of the attachable feature on one end the earbud covers, EarThotix products can be
easily transferred and used on a new pair of similar earbuds. This add-on feature offers the
customer flexibility and insurance that they will still be able to detach and reuse their custom
50 | P a g e
earbud covers, regardless of the condition of their actual headphone piece. Approximately 40%
of all headphone purchases in 2013 were replacement purchases (Lerman, 2014). Our consumer
will not be forced to replace their set of EarThotix if they need to replace their headphones with
the same model.
Customized Service
EarThotix collects and stores the ear-canal scan of every customer in a private, secure system
database. In the event that a revisiting customer wishes to purchase a new earbud cover, the
customer will not have to sit through the process of a rapid in-ear scan again. Their previous earcanal scan information will be retrieved from their existing file in the database and the 3D
printing process will be started immediately on their new earbud cover.
A Trendy Alternative
In a world where technology is constantly evolving, people are excited with new technological
alternatives and methods that attempt to solve a common issue. 3D printing is currently one of
the most up-and coming technologies out on the market. Not only does our product fulfill the
need for the customer to have an earbud that does not fall out during use, but it also fulfills the
customers want to have the most innovative and “coolest” product available.
2.2 Market Need: Why The Time is Right
● Since the explosion of smartphones and mobile devices in general, headphones have
become a necessity in today’s market
● Earbuds are extremely popular, but consumers have proven that there is a serious design
flaw
● Customers of the most popular earbuds made by companies such as Apple and
Skullcandy agree that the earbuds simply do not fit their ears properly, especially with
intensive use, such as during working out or running
● At the same time, the 3D printing market is just beginning to develop, allowing us to do
all the manufacturing in-house and create an all-in-one solution for this problem
2.3 Goals
We have developed specific short term and long term goals that will allow EarThotix to be a
successful company for years down the road. This will require us to focus on Product
Development, especially during the first three years of operation, in order to be able to cover a
wide range of headphone brands, as well as other consumer goods.
Short Term Goals
51 | P a g e
● Successfully introduce our solution into the market and generate interest among a specific
market segment
● Establish our niche market with the first-movers
● Further research and development efforts following initial customer feedback in order to
find the best design fit
● Establish and implement a degree of fit index that we can apply to every pair of
EarThotix we manufacture
Long Term Goals
●
●
●
●
●
Develop the widest possible array of compatible headphones
Open multiple locations in upscale malls
Seek possible partnership with Stratasys™ as well as other headphone companies
Develop more customizable consumer goods
Branch out into earbud technology development
2.4 Additional Future Products and Services
In our first year of business, we hope to expand our product line to cover all the major earbud
brands. This includes brands such as Skullcandy, Bose, Beats by Dre, and Sony models, among
others. This will expand our offerings and allow us to reach more consumers. In year 2 and 3,
we plan on opening a second store in a different area selling the same products; however we will
undergo intensive research and development of new, customizable products that we can create
using 3D printing. In the following future years, we plan on developing a full line of
customizable mobile accessories, making us a mobile device owner’s one-stop shop for
everything they could possibly need for their mobile device.
52 | P a g e
3.0 The Market
The main industry EarThotix will be entering is the headphone market, an extremely large and
mature market that has grown steadily since 2008. Since we will be creating a product that is
designed to fit as an add-on feature to the most popular brands of earbuds, we need to establish
the landscape of the market itself and the major players. We also need to determine what types of
consumers buy headphones, what they look for in terms of benefits, and how much they are
willing to pay for certain features or for certain standards of quality.
3.1 Market Potential for EarThotix
Headphone Industry Overview
The headphone market is a mature market that has experienced tremendous growth since 2008,
largely due to the popularity of personal electronic devices. Headphones are seen as a companion
product to devices such as smartphones, tablets, and laptops, as well as personal music players.
While growth is expected to slow over the next three to four years, there is a luxury headphone
market that is relatively new and is expected to continue to grow.
There are many different types of headphones that are offered. EarThotix products are
compatible with the most popular headphone style; earbuds.
The Numbers
● $1.5 Billion in revenue
● 7% annual growth from 2008-2013, projected 1.1% in 2013-2018
● E-commerce sales critical, account for more than 50% of sales in 2013
● 78,072 firms offering headphones
● Number of retailers expected to grow 6.5% annually
Luxury Market
● Classified as headphones with a price tag of $100 or more
● Currently makes up 43% of all headphone sales
● Fastest growing segment of the headphone market
Types of headphones
● Earbuds account for 54% of headphone sales in 2013
(Lerman, 2014)
53 | P a g e
Source: (Lerman, 2014)
Market Demographics
● 39.5% of consumers are aged 35-54, 16.3% aged 25-34
● 60% of sales are new purchase, 40% replacement
Changes in the market
● Moving towards more e-commerce sales
● Premium headphone market is rapidly expanding
(Lerman, 2014)
3.2 Specific Market Segmentations
We were able to find three specific types of consumers who purchase headphones. The lead
users, or “audiophiles,” only want to buy headphones with the highest quality audio and design.
Athletes want headphones that have good enough fit to keep up with their lifestyles, and the
casual consumer uses headphones for various activities throughout the day.
Audiophiles:
● Lead users, desire extremely high audio quality and design, seem to prefer over the ear
headphones instead of earbuds
○ Use headphones for things such as music development and gaming
Athletes:
● Need fit and comfort that can keep up with their active lifestyle
○ Primarily use sleek, lightweight headphones
54 | P a g e
Casual: everyday electronics users
● Want earbuds to use with their phone for music, generally frustrated by fit and comfort of
some earbuds such as Apple and Skullcandy
3.3 Market Needs
Audio quality, design and fit quality
We will be focusing on the need for a pair of earbuds that fit reliably. The audio quality and
design depends on what earbuds the consumer already has, and our add-on cover can only
increase the quality of fit and comfort.
In our survey conducted on campus at WPI and elsewhere, we found that headphone users highly
value the fit of their headphones. We asked “What Feature do you Value the Most When
Shopping For Headphones,” and gave the options of “audio quality,” “design/look,” “fit,” and
“brand.” “Fit” was second only to audio quality, coming back with an average response of 1.85,
with 1 being the most important and 4 being the least important feature they value when
shopping for headphones.
Market Trends/ Market Growth
The headphone industry is in a mature stage, and the growth is tied to the growth of smartphone
sales and mobile device sales. The market is expected to grow at a rate of 1.1% annually after
2014 as the mobile device market slowly begins to saturate (Lerman, 2014). It is also expected
that brands will begin to consolidate slowly as competition rises.
55 | P a g e
Target market and customers
Our initial target markets will be to appeal to athletes and audiophiles. The athlete will want a
superior fit over what their current earbuds deliver for their active lifestyle. We can provide that
perfect fit as well as a unique and effective method of delivery. This will be our first established
niche market. We will also focus on appealing to the audiophile segment of the headphone
market. These users are typically well-versed in technology and value audio quality and fit. We
can appeal to this segment by emphasizing the technology behind our product.
From our survey, we can confirm that athletic activities lead people to use headphones at a very
high rate. We asked when they were most likely to use their headphones, and the second most
common response was “exercising”, with 64% of the vote. We can attract this market with
EarThotix with the promise of fixing the problem of earbuds falling out.
56 | P a g e
4.0 The Competition
EarThotix will be competing with numerous other companies who offer ‘one size fits all’
headphones for the consumer. The most direct competition to our company would be ACS, Inc.
who also makes customizable in-ear headphone covers but using a different process.
4.1 Indirect Competition: Major Players in the Headphone Industry
The major players in the headphone industry are Skullcandy, Harman International, Bose, Sony,
and Beats by Dre, who all create earbud style headphones along with other products. Our main
competition of these headphone companies would be Skullcandy, whose value propositions of
customizability put them in direct competition with EarThotix. Even though they are a smaller
company than Bose and Sony, their profit margins are high for the industry (Hoover’s, 2013).
(Hoover’s, 2013)
Indirect Competition: Skullcandy, Inc.
Skullcandy offers custom colors and logos on their different earbud offerings. Their customers
enjoy their headphones’ mix of audio quality, design, and customizability. We believe they are
our direct competition because EarThotix will offer custom fit, whereas Skullcandy offers a wide
range of earbud colors and logos. Skullcandy enjoyed very strong growth in 2012, with 28.05%
revenue growth compared to the industry median of 6.37%. This is largely due to Skullcandy
entering into the gaming market in 2012 and focusing on introducing new headphones designed
for video game use. Based on new product introductions in the last two years, it appears as
though Skullcandy is focusing more on entering the luxury headphone market and establishing a
presence.
(Hoover’s, 2013)
57 | P a g e
4.2 Direct Competition: Headphone Cover Companies
The most direct competition that EarThotix will face are companies such as ACS Custom, who
create covers designed to be placed over existing pairs of headphones to better fit the consumers’
ears. Our key differentiating factor is our method of ear canal molding and cover manufacturing,
as companies such as ACS Inc. use traditional ear molding methods, which can range anywhere
form several days to weeks until the final product is in the customer’s hands.
ACS Custom Fit Earphone Sleeves
• Company which focuses on very high end professional models of earbuds
• Process for ACS Custom includes getting in-ear mold at audiologist, then shipping molds
to ACS lab for creation of sleeve
• Cost for sleeves only: $150 (does not include audiologist)
• Cost for Audiologist ear mold procedure: $40-$100
• Time needed: ~1 week for audiologist appointment, ~10 days for sleeve creation in ACS
lab, ~5 days for shipping
(ACS, 2013)
4.3 Changes in the Industry
● Headphone companies are starting to move towards the luxury market, releasing high-end
products that emphasize design and audio quality
● Following the lead set by Beats by Dre which have become the dominant player in the
luxury market
● Moving more and more towards e-commerce sales, with more than 50% in 2013
(Lerman, 2014)
Opportunities:
● Our main opportunity is to inject new technology into an existing, mature, and large
market
● Our production method will allow us to create more value for consumers as well as
allowing us to quickly produce custom-made ear bud covers
Threats
● Main threat is competition from established headphone brands creating custom earbuds
that better fit the consumers’ ear canal
4.4 3D Printer Industry Overview
● Stratasys™ is by far the largest and most reputable seller of 3D printing devices
● Major part of industry growth takes place in virtual crowd-sourced projects such as
Kickstarter
58 | P a g e
● Extremely basic FDM or SLA printers can be purchased for in home use, extremely
complex SLS and Polyjet printers can be purchased for business use
● Overall cost of 3D printing technology is being driven down by at home tinkering
segment
(Stratasys, 2013)
3D Printed Objects Industry Overview
● Industry growth is constant, with expected growth highly anticipated
● 3D printing is described as the top of the inflated expectations section of the hype cycle
for emerging technologies
● Most 3D printed products are not sold to a customer, but produced within a company to
aid in research and development
Current Popular 3D Applications
● Rapid prototyping for manufacturing industry
● Modeling for scale size in manufacturing industry
● At-home hobbyists and tinkerers
● Innovation planning and testing
● Very limited end-user products produced by 3D printers of any kind
Direct Competition
● Companies who 3D print end-user products
Indirect Competition
● Companies who specialize in custom products produced by methods other than 3D
printing
59 | P a g e
5.0 Marketing and Sales Strategy
Where does our company fit in the world? We fit into the need that almost everyone discovers
when using earbuds: the elusive perfect fit. Specifically, we can alleviate the pain of having
earbuds fall out for athletes who are frustrated with re-adjusting their headphones after every
move they make. We will also be able to fill the need for the average person who has an
extremely difficult time finding earbuds that fit.
EarThotix’s overall marketing strategy is to appeal to the athletic first mover market. Our
utilization of 3D printing will be a major point when positioning the product, as it enables true
customization. Involving a real time display of the 3D printer in the customer experience is a
priority, as the novelty of the new technology will fascinate potential customers. Our product
will be available brick and mortar in a mall such as a kiosk or store front, where we will have
two varieties of product for purchase, the Midas and the Apollo.
Key competitive capabilities
In contrast to the main competition, EarThotix offers a customizable product with a unique
manufacturing process and a prompt delivery time. Conducted research and collected data prove
that there is a strong need and want for our product in the marketplace. EarThotix will not make
a user replace a product they already own, but rather offer a customizable, add-on attachment to
a frequently used commodity.
Key competitive weaknesses
Completing a thorough analysis on competitors currently in the market, we have identified a few
potential weaknesses. Lack of experience will be a major factor for our business as this is our
first attempt at a startup company. Also, money will play a significant role in the forming of our
company as we will have to find the necessary resources, other than our own personal savings, to
allocate funds for our ventures. Another challenge we expect to face is discovering how many
units we can produce at first to keep up with demand.
Becoming aware of our weaknesses is the first step in forming solutions to transform them into
our strengths down the road. Although we lack experience, we are proactive and always striving
to continue researching our target market, competitors, and the voice of our potential consumers
in order to continue gathering information for our business to grant us the competitive edge. We
utilize the knowledgeable advice of our college business professors and our connections with
current business owners and 3D printing employees. We are exploring ways in which to promote
our company and partner with investors, which will help pay for our expenses and the needed
resources to keep up with the demand of our product.
60 | P a g e
5.1 Implementing Strategy
In order for EarThotix to excel, we need to focus on our competitive advantages when
determining strategies to pursue. We are looking to capitalize on our unique source of
manufacturing, 3D printing, and its distinctive ability to construct a completely custom unit,
different for each user, with an unmatchable fit. We plan on playing to our strengths, especially
our early establishment in the brand and our timely speed of delivery of our product to the
customer. We also will be closely monitoring the price of maintaining printers, materials and
resources within our company in order to adjust our prices and costs if necessary.
Marketing strategy
The proper positioning of our unique earbud solution is essential to establishing EarThotix as an
innovative solution and a desirable high-tech product. By developing our marketing strategy
based around EarThotix key differentiating factors, and targeting the groups most likely to value
those differentiating factors, we ensure that the value will be recognized by potential consumers.
● Target tech savvy and athletic groups equally
● Position EarThotix as a futuristic solution to attract first movers
○ show the process of 3D printing
● Going for an athletic endorsement from a major athlete
● Keeping customer ear canal scans to encourage repeat visits
Sales Tactics
Even if the consumer likes the idea of owning a 3D printed solution, they will need to have value
demonstrated to them in other ways than product value. In order to convince potential customers
that EarThotix are valuable and worth purchasing, a few subtle sales tactics will guide the
customer experience and maximize purchases.
● Free in-ear scan for first time customers
● Develop a degree of fit index which can clearly quantify and demonstrate to potential
customers the benefit EarThotix may provide over traditional earbuds
Customer Relationship
As a strategy to minimize customer difficulty in acquiring our product, each free in-ear scan may
be saved in a secure database of customers. Subsequent visits would not require the in-ear scan,
and potentially will not require any physical visit to the retail location.
It is important to EarThotix as a brand and the industry of 3D printing that customer creativity
and input be encouraged and rewarded. Our interactive customer experience offers ample
opportunity for survey and feedback functions, to be completed concurrently with the sign in and
ordering process.
61 | P a g e
Advertising
As a new company entering into an established market, EarThotix must employ a gripping ad
campaign which will intrigue and excite the potential customer. Our goals are to eventually be
associated with all major earbud brands, and to be recognized as the most innovative approach to
solving the problem of ill-fitting earbuds.
● The “Every Ear Is Different” campaign will draw attention to how varied ear canal shape
is among individuals, and even between your right ear and left ear, emphasizing the value
of a customized solution
● The Athletic campaign will emphasize the way that interruptions in an athletic routine or
regimen of any kind are inconvenient and potentially “throw you off your game”
○ We want to stress our benefit of the continuous experience of music
● Work with Hub Spot for inexpensive internet exposure and inbound marketing
● Will do own self advertising via social media such as Facebook and Twitter. We will also
create our own website.
Publicity
Trade shows represent an opportunity for us to demonstrate how quick and painless our process
is. EarThotix could successfully participate in both consumer audio and 3D printing trade shows
to maximize exposure and networking potential.
Location
In year 1, our first store will be located in the Natick mall where we will rent out a space roughly
500 sq. ft. This is an area with high consumer traffic which allows our products to gain
maximum exposure. In year 2, we hope to open a second store in the Northeast US, exact
location to be determined, but still within a mall.
Product Development
In year 1, we plan on selling two products, both earbud covers; Midas and Apollo. In the
following years we will still be selling these two original products. However, we plan on
investing more money in Research and Development costs for creating new accessories and
products, desired and thought of by our customers, with 3D printing.
Pricing
EarThotix products will be positioned at the high end of the market as a result of their unique 3D
printed manufacturing process and optimal customization. For the prices of both our Midas and
Apollo products, we implemented an image/prestige pricing strategy. As a result of the smoother
surface finish and extended time to print, the Apollo is priced more expensive than the Midas
● Midas is priced at $50.00 per set
● Apollo is priced at $75.00 per set
62 | P a g e
6.0 Operations
Choice of Store Venue
There were three main possible venue options for opening our store. The first was purchasing our
own building, the second was renting out a small space in a mall, and the third was buying a
truck and having a mobile operation. After an analysis of our business, strategies, products,
equipment we will be using, costs and current cash, we concluded that we would not require a
large space for our operation. Also, the mobile business truck idea would not be ideal since the
3D printers themselves need to be on a solid, steady surface in order to avoid damage. Renting a
small space in a mall was the most practical for our business as it met our needs as a company,
while also providing a source of advertising for our business as a result of the natural flow of
people traveling through the mall to different stores.
Product Service and Delivery
We plan to position our traditional storefronts in kiosks in upscale malls, preferably locating
ourselves right outside of stores where high-end electronics are sold. Our customers will start by
receiving an ear scan from an EarThotix employee. In the time it takes for us to print out their
custom EarThotix earbud covers, the customer will be able to go about their shopping at the
mall, and come back at a specified time before they leave to pick up their product. We will print
out three batches of EarThotix earbud covers per day, at 10 AM, 1 PM, and 4 PM. The customer
will be able to come back at the closest available time slot to pick up their product.
To emphasize our commitment to high tech solutions, an integrated iPad ordering and survey
system will be utilized in the store. This will allow customers to self-educate and submit
themselves for the scanning and ordering process. Another benefit of operating this system is the
opportunity for customers to provide real time instantaneous feedback about their experience,
and make suggestions about improving the process. Survey and customer idea generation is a
priority for EarThotix, and allowing customers to submit their own ideas in contests will serve as
a huge opportunity for product diversification efforts.
Store layout
For our mall store, we plan on having a 500 sq. ft. space. There will be two distinct stations
within the floor layout; the rapid ear-scan station and the 3D printing station. We also plan on
having an open floor plan layout, with everything visible to the customer, for the purpose of
enhancing the customer experience by allowing them to see the 3D printer in action, creating
their product. This process will also intrigue passers-by into the store and spark their interest in
EarThotix products, potentially becoming future customers or spreading the word about our
store.
63 | P a g e
Equipment and Suppliers
For each of our stores, we will have two 3D printers and one rapid ear-scanner. Two printers are
necessary as we will need one for or Midas product and the other for our Apollo product. This
will enable a better flow of operations as it eliminates us having to change the material in the
printer for every different order and it allows us to print multiple units at once. We will purchase
our printers and the materials we will need from the company, Stratasys™, and our rapid earscan from Lantos Technologies™.
Organizational Structure and Key Personnel
Outside of the EarThotix founders who will be responsible for the overall management and
financials of the business, our company structure will consist of two key employees. First, we
will have one employee who will be responsible for operating the rapid ear-canal scanner device
and responsible for customer service and sales on the floor. He will also be responsible for
recording and organizing the transactions of all customers in a database. Our store space is small
so this job is manageable and ideal, as it reduces the risk of idle time by the employee when
customers are few, thus increasing company efficiency. Our second employee will operate the
3D printer and be responsible for both the printing of the Midas and Apollo products once the
scan has been completed and delivered. Below is a visual representation of our company
personnel and chain of command.
64 | P a g e
7.0 Financials
7.1 Financial Projections
OPENING DAY BALANCE SHEET
ASSETS
Current Assets
Cash
Inventory and Supplies
Pre-paid Expenses
Other
Total
$ 500.00
$ 3,630.00
$
$
$4,130.00
Fixed Assets
Machinery & Equipment
Furniture and Fixtures
Lease
Real Estate/Building
Other
Total
$ 202,500.00
$ 1,600.00
$
$
$
$204,100
Total Assets
$208,230.00
LIABLITIES
Current Liabilities
Accounts Payable
Taxes
Salaries
Notes Payable
Interest Payable
Insurance
Current Portion of Long Term Debt
Other
Total
$
$
$
352.00
$
$
$
$
$
$ 352.00
Assets minus Current Liabilities
Long Term Liabilities
Bank Loans
Notes Payable to Stockholders
Other
Total
Owners' Networth
Invested
Retained Earnings
Total
$207,878.00
Total Liabilities and Networth
$208,230.00
65 | P a g e
0
0
0
$0
$207,878.00
0
$207,878.00
Income Statement
EarThotix
First Year Operation
Financial Statements in U.S. Dollars
Revenue
Gross Sales
Less: Sales Returns and Allowances
Net Sales
$
$
678,986.00
$
678,986.00
$
$
159,694.00
519,292.00
$
$
222,913.00
296,379.00
$
$
296,379.00
Cost of Goods Sold
Beginning Inventory
Add:
Inventory Available
Less: Ending Inventory
Cost of Goods Sold
Gross Profit (Loss)
Purchases
Freight-in
Direct Labor
Indirect Expenses
$
$
$
$
$
$
$
71,698.00
87,996.00
159,694.00
-
Expenses
Advertising and Marketing
Contingency Fund
Depreciation
Hotels and Entertainment
Legal and Professional Fees
Office Expense
Payroll Taxes
Postage
R&D
Rent
Repairs and Maintenance
Telephone
Transportation
Wages
Total Expenses
Net Operating Income
$
$
$
$
$
$
$
$
$
$
$
$
$
$
13,320.00
10,000.00
11,617.00
5,000.00
8,156.00
1,600.00
4,840.00
500.00
67,800.00
8,520.00
1,500.00
60.00
2,000.00
88,000.00
Other Income
Gain (Loss) on Sale of Assets
Interest Income
Total Other Income
Net Income (Loss)
66 | P a g e
$
$
-
Twelve-month profit and loss projection
EarThotix
Jan15
%
B/A
Feb15
%
Mar15
%
Apr15
%
May15
%
Jun15
Midas
25,000
66.2
27,500
66.2
30,250
66.2
33,275
66.2
34,939
66.2
36,686
Apollo
Total Revenue
(Sales)
12,750
33.8
14,025
33.8
15,428
33.8
16,970
33.8
17,819
33.8
18,710
37,750
100.0
41,525
100.0
45,678
100.0
50,245
100.0
52,758
100.0
55,396
Midas
2,975
11.9
3,272
11.9
3,600
11.9
3,960
11.9
4,158
11.9
4,365
Apollo
Total Cost of
Sales
1,011
7.9
1,112
7.9
1,224
7.9
1,346
7.9
1,413
7.9
1,484
3,986
10.6
4,384
10.6
4,824
10.6
5,306
10.6
5,571
10.6
5,849
Gross Profit
33,764
89.4
37,141
89.4
40,854
89.4
44,939
89.4
47,187
89.4
49,547
Salary expenses
7,333
19.4
7,333
17.7
7,333
16.1
7,333
14.6
7,333
13.9
7,333
Outside services
1,250
3.3
1,250
3.0
1,250
2.7
1,250
2.5
1,250
2.4
1,250
Supplies (office
and operating)
1,600
4.2
0
0.0
0
0.0
0
0.0
0
0.0
0
Boston Globe
Advertisement
610
1.6
610
1.5
610
1.3
610
1.2
610
1.2
610
200
0.5
200
0.5
200
0.4
200
0.4
200
0.4
200
0
0.0
0
0.0
0
0.0
0
0.0
0
0.0
0
300
0.8
300
0.7
300
0.7
300
0.6
300
0.6
300
Rent
710
1.9
710
1.7
710
1.6
710
1.4
710
1.3
710
Telephone
30
0.1
30
0.1
30
0.1
30
0.1
30
0.1
30
Revenue (Sales)
Cost of Sales
Expenses
HubSpot
Advertisement
Gold's Gym
ADvantage
Advertisement
Facebook
Advertisement
67 | P a g e
3D Printer
Depreciation
3D Scanner
Depreciation
938
Net Profit
938
31
R&D
Contingency
Fund
Total Expenses
2.5
2.3
938
31
2.1
938
31
1.9
31
938
1.8
31
938
31
5,658
15.0
5,658
13.6
5,658
12.4
5,658
11.3
5,658
10.7
5,658
2,263
6.0
2,263
5.4
2,263
5.0
2,263
4.5
2,263
4.3
2,263
20,923
55.4
19,323
46.5
19,323
42.3
19,323
38.5
19,323
36.6
19,323
12,841
34.0
17,818
42.9
21,531
47.1
25,616
51.0
27,864
52.8
30,224
Jul-15
%
Aug15
%
Sep15
%
Oct-15
%
Nov15
%
Dec15
%
YEARLY
%
Apollo
38,520
66.2
40,446
66.2
42,468
66.2
44,592
66.2
46,821
66.2
49,162
66.2
449,659
66.2
Total Revenue (Sales)
19,645
33.8
20,627
33.8
21,659
33.8
22,742
33.8
23,879
33.8
25,073
33.8
229,327
33.8
58,165
100.0
61,073
100.0
64,127
100.0
67,334
100.0
70,700
100.0
74,235
100.0
678,986
100.0
4,584
11.9
4,813
11.9
5,054
11.9
5,306
11.9
5,572
11.9
5,850
11.9
53,509
11.9
Revenue (Sales)
Midas
Cost of Sales
Midas
Apollo
1,558
7.9
1,636
7.9
1,718
7.9
1,804
7.9
1,894
7.9
1,989
7.9
18,189
7.9
6,142
10.6
6,449
10.6
6,772
10.6
7,110
10.6
7,466
10.6
7,839
10.6
71,698
10.6
52,023
89.4
54,624
89.4
57,355
89.4
60,224
89.4
63,234
89.4
66,396
89.4
607,288
89.4
Outside services
7,333
12.6
7,333
12.0
7,333
11.4
7,333
10.9
7,333
10.4
7,333
9.9
88,000
13.0
Supplies (office and
operating)
1,250
2.1
1,250
2.0
1,250
1.9
1,250
1.9
1,250
1.8
1,250
1.7
15,000
2.2
Total Cost of Sales
Gross Profit
Expenses
Salary expenses
68 | P a g e
Boston Globe
Advertisement
0
0.0
0
0.0
0
0.0
0
0.0
0
0.0
0
0.0
1,600
0.2
HubSpot Advertisement
610
1.0
610
1.0
610
1.0
610
0.9
610
0.9
610
0.8
7,320
1.1
Gold's Gym ADvantage
Advertisement
200
0.3
200
0.3
200
0.3
200
0.3
200
0.3
200
0.3
2,400
0.4
Facebook
Advertisement
0
0.0
0
0.0
0
0.0
0
0.0
0
0.0
0
0.0
0
0.0
Rent
300
0.5
300
0.5
300
0.5
300
0.4
300
0.4
300
0.4
3,600
0.5
Telephone
710
1.2
710
1.2
710
1.1
710
1.1
710
1.0
710
1.0
8,520
1.3
3D Printer Depreciation
30
0.1
30
0.0
30
0.0
30
0.0
30
0.0
30
0.0
360
0.1
3D Scanner
Depreciation
938
1.6
938
1.5
938
1.5
938
1.4
938
1.3
938
1.3
11,250
1.7
R&D
31
31
0.0
31
0.0
367
Contingency Fund
5,658
9.7
5,658
9.3
5,658
8.8
5,658
8.4
5,658
8.0
5,658
7.6
67,896
10.0
Total Expenses
2,263
3.9
2,263
3.7
2,263
3.5
2,263
3.4
2,263
3.2
2,263
3.0
27,156
4.0
19,323
33.2
19,323
31.6
19,323
30.1
19,323
28.7
19,323
27.3
19,323
26.0
233,469
34.4
32,700
56.2
35,301
57.8
38,032
59.3
40,901
60.7
43,911
62.1
47,073
63.4
373,819
55.1
31
31
31
Net Profit
69 | P a g e
7.2 Financial Projection Assumptions
Below is the breakdown of our financial assumptions for our first year of business:
Setup Review for year 1
● Open one store in mall
● Selling two products: Midas and Apollo
● Two employees
Growth Projections
● A top headphone competitor's growth in their first year was approximately 28%
(Hoover’s, 2013). Since we are a company that offers a unique manufacturing process
and 3D printing technology along with custom products, we used this percentage as a
base but increased our overall growth percentage.
● We formed the following growth projections in year 1 for our first store: (1) For the first
three months, growth would be approximately 10% per month for all products. (2) After
the first three months and for the remaining of the year, growth would be 5% per month
for all products.
Cost of Goods
● Our Cost of Goods is calculated under the following assumptions: (1) Two grams of the
material that we will be using costs $5.95. (2) It takes two grams of the material to make
one set of EarThotix earbuds. (3) In year 1, we would be selling approximately 3,058
units of Apollo earbuds and 8,993 units of Midas earbuds.
Equipment
● 3D printers: We would purchase two 3D printers from Stratasys™ in year 1 for our first
store. Information on the costs of their 3D printers is scarce, so we are setting aside
$200,000 for purchase.
● In-ear scanner: We would purchase one in-ear scanner from Lantos Technologies™ in
year 1 for our first store. Information on their scanners is scarce, so we are setting aside
$2,500 for purchase.
Advertising Expenses
● Newspaper advertisements in the Boston Globe cost approximately $610 for six
advertisements a month (Boston Globe, 2014).
● The basic package for Hub Spot advertisements cost approximately $200 a month
(HubSpot, 2014).
● Business advertisement costs at Gold’s Gym in their ADvantage program are free of cost
(Gold’s Gym, 2014).
● Facebook website advertisements cost approximately $300 a month (Facebook, 2014).
70 | P a g e
Research and Development Expenses
● We chose to allot 10% of our estimate total gross revenue towards R&D. The standard in
the headphone market is 8.7% (Lerman, 2014). We decided to increase this base
percentage for our company since we are using 3D printing manufacturing and want to
heavily research other products we could develop using this technology in the following
years.
Salary Expenses
● We chose to pay our scanner/customer service employee an annual salary of $40,000 and
our 3D printer employee an annual salary of $48,000. There was either limited or no
information on the annual salaries for both these exact positions due to their rarity. We
could not find information on the annual salary for an in-ear scanner technician to model
our number after, but the rough average annual salary for a customer service
representative is $39,500 (Glassdoor, 2014). In choosing this salary, we took into
consideration that the technician's job would not require a college degree but only
training seminars for the in-ear scanner and his/her job would not entail extensive work
with customers, mainly just answering questions in-store. Similarly, it was also very
difficult to find information on the annual salary of a 3D printing employee. In choosing
this salary number, we took into consideration that this was mainly a manual job that
required training but no necessity for a college degree
Outside Services Expense
● Our company’s outside service costs for year 1 consist of the $15,000 maintenance
package Stratasys™ provides with the purchase of their 3D printers.
Telephone Services Expense
● A typical business telephone package plan is approximately $30 a month (Comcast,
2014).
Rent
● We based our rent price on the average rental price in Massachusetts. The average rental
price in Massachusetts is $1.42/sq. foot per month. Our space would be approximately
500 sq. ft. that we would be renting for a total of 12 months in year 1. Thus, the
approximate total amount our company would be spending in year 1 for rent would be
$8,520.00
71 | P a g e
3D Printer Depreciation
● In year 1, our total asset value for the 3D printers is $200,000. We have determined that
the machine’s approximate useful life is 10 years and their salvage value after this time
span is $50,000.
In-ear Scanner Depreciation
● In year 1, our total asset value for the in-ear scanners is $2500. We have determined that
the scanners approximate useful life is 5 years and its salvage value after this time span is
$50.
Contingency Fund
● We chose to allot 4% of our estimate total gross revenue towards other expenses and
adjustments as a safety net for unforeseen expenses by the company.
Funding
● We hope to acquire approximately $500,000 in funds for our first year.
7.3 Company Key Milestones
After research and analysis of the market and our company vision, we have determined the
following key milestones to be reached in order to successfully launch EarThotix from concept
to reality:
72 | P a g e
1.
2.
3.
4.
5.
6.
Test process and product
Trademark name EarThotix, purchase online domain
Acquire investors and obtain needed amount of initial funding
Purchase equipment, material and hire necessary personnel
Rent desired store location
Launch advertising and marketing campaign
7.4 Risks
There are certain events that, if occur, could have negative effects on the performance and
success of EarThotix. These include the following:
● Initial financial assumptions and estimates are substantially inaccurate and below the
actual numbers
● Do not receive the necessary amount of funding
● Competition intensifies in our particular target market
● Lack of resources necessary to stop a larger more established company from taking our
idea and expanding on it quicker than us
● Cannot obtain the desired store location
● Problems with the technology working as planned
Should these risks occur, EarThotix will take the necessary steps and respond immediately.
73 | P a g e
8.0 Feasibility
In determining whether or not EarThotix would be feasible, we considered numerous factors:
1.
2.
3.
4.
5.
6.
7.
8.
The current situation of our targeted industry and market
Demand and need for our product
Current competitors and possible threat of new competition or product substitutions
Competitive advantage of our idea and product. What differentiates our product from our
competitors and why will customers choose our product over theirs.
Financial forecasts and potential profitability
Ability and resources to supply our product to meet demand
Current personal circumstances such as knowledge and experience in industry, skill set
and commitment to our idea and venture
Do benefits outweigh drawbacks and potential risks for our idea
After researching and analyzing these factors, we came to the following conclusions:
Factor
1.
2.
3.
4.
74 | P a g e
Analysis
Feasible?
Yes/No/Maybe
The headphone market is a very large and mature industry that
could use a new product to start reversing the product life cycle.
It is a $1.5B industry, with 54% of all headphones sold in 2013
being earbuds. This means our product will have an extremely
large built-in user base.
Yes
Based on the results of our public survey and based on various
conversations, blogs and consumer reports, there is an easily
identifiable need by the majority for a product such as ours that
can offer a solution to the problem of falling out earbuds.
Yes
There is currently heavy competition in the headphone market
with numerous big name companies. There is always a threat of
a new competitor or a new substitute product, such as ours, in a
technological market. However, since we offer our product as
an add-on feature to many of these current competitors’
products, and do not pose as a direct threat to their business, we
firmly believe that our company will find success and thrive.
Yes
Our product serves as an add-on feature to already currently
existing in-ear headphones. We use a unique manufacturing
process that is currently unmatched in the industry, involving
3D printing technology. Customers are offered an entirely
customizable product, perfectly fit to the exact structure of their
Yes
ear canal.
5.
6.
7.
8.
Our financial forecasts and analyses show a high potential
profitability for our company. However, that it is based on our
assumptions of cost and demand.
Maybe
We have suppliers for our scanners, 3D printers and material.
All we would need to do is hire the necessary employees and
rent the optimal location for our store. Once we accomplish
this, we should have no problem meeting demand.
Yes
Currently, we have no experience in this industry. We are
undergraduate students at Worcester Polytechnic Institute
finishing our senior years in the school of business with
concentrations in Biomedical Engineering and Mechanical
Engineering. We will be relying on the advice and guidance of
our WPI advisor who is a business professor and an experienced
entrepreneur specialist. Since we are learning as we go, we will
also be relying on the skill set and knowledge of our
connections with personnel experienced with in ear scanners
and 3D printers. We have a strong commitment to our idea and
are proactively pursuing this venture and further valuable
connections.
Maybe
We have determined that the benefits and potential profitability
of this company outweigh the potential risks we could face.
Yes
As can be seen by the analysis above, we conclude that the launching of our business, EarThotix,
is feasible and will prove to be a profitable and successful venture.
75 | P a g e