Factoring Trinomials

Factoring Trinomials
In order to factor a trinomial, we must make FOUR terms so we can
factor by grouping.
We do this by re-writing the middle term as a sum or difference of
two terms.
Factoring a trinomial of the form
π’‚π’™πŸ + 𝒃𝒙 + 𝒄
Step 1:
Step 2:
Step 3:
Find the factors of 𝒂 βˆ™ 𝒄 that sum to 𝒃
Break up the middle term as a sum (or difference)
of the factors.
Factor by grouping.
Example 1:
Factor:
πŸ’π’™πŸ βˆ’ πŸ“π’™ βˆ’ πŸ”
𝒂=
𝒃=
𝒄=
𝒂 βˆ™ 𝒄 = βˆ’πŸπŸ’
We want to find factors of βˆ’πŸπŸ’ that sum to
To find these factors, we make a list:
1
.
βˆ’πŸπŸ’
SUM
βˆ’πŸπŸ’
𝟏
βˆ’πŸπŸ
𝟐
βˆ’πŸ”
πŸ’
βˆ’πŸ‘
πŸ–
πŸ‘
βˆ’πŸ–
βˆ’πŸπŸ‘
βˆ’πŸ“
Now that we have identified the factors, we can rewrite the trinomial
by breaking up the middle term.
πŸ’π’™πŸ βˆ’ πŸ“π’™ βˆ’ πŸ”
πŸ’π’™πŸ + πŸ‘π’™ + πŸ–π’™ βˆ’ πŸ”
And now that we have four terms, we can factor by grouping.
πŸ’π’™πŸ + πŸ‘π’™ + πŸ–π’™ βˆ’ πŸ”
2
Example 2:
Factor each trinomial.
a.)
πŸ’π’™πŸ βˆ’ πŸπ’™ βˆ’ πŸ”
b.)
πŸπŸŽπ’‚πŸ + πŸ—π’‚ + 𝟐
c.)
πŸ’π’˜πŸ + πŸ–π’˜ + πŸ‘
d.)
πŸ“π’™πŸ βˆ’ πŸπŸ”π’™ + πŸ‘
3
Factoring Trinomials
Practice Problems
Factor each trinomial:
1.
πŸ‘π’™πŸ + πŸπŸŽπ’™ + πŸ•
2.
πŸπŸπ’‚πŸ + πŸπŸπ’‚ βˆ’ πŸ“
3.
πŸπŸŽπ’˜πŸ βˆ’ πŸπŸπ’˜ βˆ’ πŸ”
4.
πŸ”π’™πŸ βˆ’ πŸπŸ•π’™ + 𝟏𝟐
5.
πŸπŸŽπ’„πŸ βˆ’ πŸπŸ‘π’„ + 𝟏𝟐
4