C H A P T E R 0 A Precalculus Review Section 0.1 The Real Number Line and Order Section 0.2 Absolute Value and Distance on the Real Number Line . . . . . . 3 Section 0.3 Exponents and Radicals . . . . . . . . . . . . . . . . . . . . . . . 5 Section 0.4 Factoring Polynomials . . . . . . . . . . . . . . . . . . . . . . . . 6 Section 0.5 Fractions and Rationalization . . . . . . . . . . . . . . . . . . . . 9 Practice Test . . . . . . . . . . . . . . . . .2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 C H A P T E R 0 A Precalculus Review Section 0.1 The Real Number Line and Order Solutions to Odd-Numbered Exercises 1. Since 0.7 7 , it is rational. 10 3. 3 is irrational because is irrational. 2 5. 4.3451 is rational because it has a repeating decimal expansion. 3 64 4, it is rational. 7. Since 3 60 is irrational, since 60 is not the cube of a rational number. 9. 11. (a) Yes, if x 3, then 53 12 3 > 0. 13. 0 < (b) No, if x 3, then 53 12 27 < 0. 3 3 (d) No, if x , then 5 12 2 2 0 < x2 < 8 5 5 (c) Yes, if x , then 5 12 12 > 0. 2 2 9 2 x2 < 2 4 2 < x < 10 (a) Yes, if x 4, then 2 < x < 10. < 0. (b) No, if x 10, then x is not less than 10. (c) No, if x 0, then x is not greater than 2. (d) Yes, if x 72, then 2 < x < 10. 15. x5 ≥ 7 x55 ≥ 75 x 10 12 14 17. 4x 1 < 2x 16 x 2 0 21. 2 4 5x < 1 0 1 2 − 12 7 2 x 2 0 2 4 1 < 2x < 7 1 2 < x < x > 1 3 1 > x1 > 4 4 1 4 3 4 25. x 1 2 1 4 < 2x 3 < 4 4 3 < 2x 3 3 < 4 3 5x < 5 1 3 < x < 4 4 2 1 x < 2 19. 4 2x < 3x 1 1 3 > x > 4 4 x 2x < 1 x ≥ 12 23. − 12 1 2 x x > 5 2 3 0 3x 2x > 30 5x > 30 x > 6 7 2 x 4 6 8 Section 0.2 2x 2 x < 6 27. Absolute Value and Distance on the Real Number Line 3 3 −2 x 2x 2 x 6 < 0 −2 −1 0 1 2 2x 3x 2 < 0 3 3 3 Zeros of the polynomial 2x 3x 2 are x 2 and x 2. Testing the intervals , 2 , 2, 2, and 2, , you see 3 that the solution set is 2 < x < 2. 29. Hydrochloric acid −2 Pure water 31. R 115.95x and C 95x 750 and we have: Oven cleaner x 0 2 4 Lemon juice 6 8 R > C 10 12 14 Black Baking coffee soda 115.95x > 95x 750 20.95x > 750 x > 750 35.7995 . . . 20.95 Therefore, x ≥ 36 units. 33. Let x be the number of miles driven each week. Then the company reimburses according to the formula 35. Given a < b, C 100 0.35x (a) 2a < 2b is false. (b) a 2 < b 2 is true. According to the allocations, you have (c) 6a < 6b is true. 200 ≤ C ≤ 250 (d) 200 ≤ 100 0.35x ≤ 250 1 1 < is false if ab > 0 and true if ab < 0. a b 100 ≤ 0.35x ≤ 150 100 150 ≤ x ≤ 0.35 0.35 285.71 < x < 428.57 Thus, the minimum is approximately 285.7 miles per week, and the maximum is approximately 428.6. Section 0.2 Absolute Value and Distance on the Real Number Line 1. (a) The directed distance from a to b is 75 126 51. (b) The directed distance from b to a is 126 75 51. (c) The distance between a and b is 75 126 51. 3. (a) The directed distance from a to b is 5.65 9.34 14.99. (b) The directed distance from b to a is 9.34 5.65 14.99. (c) The distance between a and b is 5.65 9.34 14.99. 16 128 5. (a) The directed distance from a to b is 112 75 5 75 . 112 128 (b) The directed distance from b to a is 16 5 75 75 . (c) The distance between a and b is 7. x ≤ 2 112 75 128 16 5 75 . 9. x > 2 11. x 4 ≤ 2 4 Chapter 0 A Precalculus Review 13. x 2 > 2 15. x 4 < 2 19. 5 < x < 5 21. x −6 −4 −2 2 0 4 6 17. y a ≤ 2 x < 3 or 2 x > 3 2 x < 6 x > 6 23. 5 < x 2 < 5 7 < x < 3 7 3 x −6 x3 ≤ 5 2 25. or x 8 6 x3 ≥ 5 2 27. 10 x < 4 x3 2 ≤ 52 2 x3 2 ≥ 52 2 x 3 ≤ 10 x 3 ≥ 10 x 3 3 ≤ 10 3 0 0 4 10 x > 4 x < 14 x > 6 x > 14 x < 6 x 6 x 3 3 ≥ 10 3 x ≤ 7 or 4 10 14 x ≥ 13 −7 13 x 10 0 10 1 < 9 2x < 1 29. 31. b ≤ x a ≤ b ab ≤ x ≤ ab 10 < 2x < 8 8b a < 3x < 8b a x a−b 4 < x < 5 a a+b 1 1 a 8b < x < a 8b 3 3 x 4 3x a < 2b 4 8b < 3x a < 8b 5 > x > 4 2 2b < 33. 6 x a − 8b 3 35. Midpoint 7 21 14 2 41. 1083.4 0.2 ≤ M ≤ 1083.4 0.2 1083.2 ≤ M ≤ 1083.6 37. Midpoint 6.85 9.35 1.25 2 43. a 3 39. Midpoint a + 8b 3 1 12 34 1 4 2 2 8 h 68.5 ≤ 1 2.7 1 ≤ M 1083.4 ≤ 0.2 h 68.5 ≤ 1 2.7 2.7 ≤ h 68.5 ≤ 2.7 65.8 ≤ h ≤ 71.2 45. x 200,000 ≤ 25,000 25,000 ≤ x 200,000 ≤ 25,000 175,000 ≤ x ≤ 225,000 47. (a) E 4750 ≤ 500 ⇒ 4250 ≤ E ≤ 5250 0.054750 237.50 E 4750 ≤ 237.50 ⇒ 4512.50 ≤ E ≤ 4987.50 (b) $5116.37 is not within 5% of the specified budgeted amount; at variance. Section 0.3 Exponents and Radicals 49. (a) E 20,000 ≤ 500 ⇒ 19,500 ≤ E ≤ 20,500 0.0520,000 1000 E 20,000 ≤ 1000 ⇒ 19,000 ≤ E ≤ 21,000 (b) $22,718.35 is at variance with both budget restrictions. Section 0.3 Exponents and Radicals 1 1 3. 423 48 2 1. 323 38 24 5. 1 21 1 12 32 3 21 12 12 7. 322 423 34 48 12 32 44 3 272 11. 3 27 32 9 2 9. 6100 6100 61 1 5 13. 412 1 4 1 2 15. 3225 17. 5001.0160 908.3483 7x 2 7x 5 x3 29. 3xx 3xx 3x, x12 x 2 1 1 22 4 3 154 5.3601 19. 21. 6y22y43 6y223 y12 6 25. 1 5 32 18 y 14 3 4y14 23. 10x 22 10x 4 27. 12x y3 4 x y5, 9x y2 3 31. (a) 8 4 x > 0 xy0 2 42 22 (b) 18 9 2 92 32 3 16x5 3 8x32x 2 3 8x3 3 2x 2 2x 3 2x 2 33. (a) 4 32x 4z5 4 16x 4z 42z 4 16x 4z 4 4 2z 2 x z 4 2z (b) [Note: Since x4 is under the radical, x could be positive or negative. For z5 to be under the radical, z must be positive.] 3 144x9y4z5 3 1823x33 y13y1z2z3 35. (a) 3 18y1z2 2x3y1z 2x3z y 2x3z 3 18z2y2 y2 37. 4x 3 6x 2x2x 2 3 3 18z2 y (b) 123x 57 3223x 563x 5 23x 5333x 5 23x 539x 15 39. 2x 52 x12 x122x 3 1 2x 3 1 x12 5 6 Chapter 0 A Precalculus Review 41. 3xx 132 6x 112 3x 112xx 1 2 43. 3x 112x 2 x 2 x 1x 12 x 13 x 12 x 1 x 1 x 12 x 12 3x 1 x 1x 2 12 x 12 2 x 12 2x 12 x 12 45. x 2 12x 112 2xx 112x 2 1 x2 1x 112x2 1 2xx 1 x 2 1x 1123x 2 2x 1 x 2 13x 2 2x 1 x 112 47. x 1 is defined when x ≥ 1. Therefore, the domain is 1, . 49. x 2 3 is defined for all real numbers. Therefore, the domain is , . 51. 1 is defined for all real numbers except x 1. Therefore, the domain is , 1 1, . 3 x 1 53. The numerator is defined for x ≥ 2. The denominator is defined for all x 4. Therefore, the domain is 2, 4 4, . 55. x 1 is defined when x ≥ 1, and 5 x is defined when x ≤ 5. Therefore, the domain of x 1 5 x is 1 ≤ x ≤ 5. 57. A 10,000 1 0.065 12 120 $19,121.84 59. A 5000 1 0.055 4 60 $11,345.46 32L 4 2 32 1 2 8 61. T 2 2 1 22 2 2 2.22 seconds 2 Section 0.4 Factoring Polynomials 1. Since a 6, b 1, and c 1, we have x 1 ± 1 24 1 ± 5 . 12 12 Thus, x 15 15 1 1 or x . 12 2 12 3 3. Since a 4, b 12, and c 9, we have x 12 ± 144 144 12 3 . 8 8 2 Section 0.4 5. Since a 1, b 4, and c 1, we have y 7 7. Since a 2, b 3, and c 4, we have 4 ± 16 4 4 ± 23 2 ± 3. 2 2 9. x 2 4x 4 x 22 Factoring Polynomials x 3 ± 9 424 3 ± 41 4 4 11. 4x 2 4x 1 2x 12 13. x 2 x 2 x 2x 1 15. 3x 2 5x 2 3x 2x 1 17. x 2 4xy 4y 2 x 2y2 19. 81 y 4 9 y 29 y 2 21. x3 8 x3 23 x 2x 2 2x 4 9 y 23 y3 y 23. y3 64 y3 43 25. x3 27 x3 33 y 4 y 2 4y 16 x 3x 2 3x 9 27. x3 4x 2 x 4 x 2x 4 x 4 29. 2x3 3x 2 4x 6 x 22x 3 22x 3 x 4x 2 1 2x 3x 2 2 x 4x 1x 1 31. 2x3 4x 2 x 2 2x 2x 2 x 2 33. x4 15x2 16 x2 16x2 1 x 22x 2 1 35. x 2 5x 0 x 4x 4x2 1 37. xx 5 0 x2 9 0 x 3, 3 x 32 9 0 x 2 6x 9 9 0 43. x2 x 2 0 x ± 3 45. x 2x 1 0 xx 6 0 x2 3 0 x 3 x 3 0 x 3x 3 0 x 0, 5 41. 39. x 2 5x 6 0 x 2x 3 0 x 2, 1 x 2, 3 x 0, 6 47. x3 64 0 x3 64 3 x 64 4 49. x 4 16 0 51. x3 x 2 4x 4 0 x 2x 1 4x 1 0 x 4 16 4 16 ± 2 x ± x 1x 2 4 0 x 1x 2x 2 0 x 1, ± 2 53. Since x2 4 x 2x 2, the roots are x ± 2. By testing points inside and outside the interval 2, 2, we find that the expression is defined when x ≤ 2 or x ≥ 2. Thus, the domain is , 2 2, . 55. Since x 2 7x 12 x 3x 4, the roots are x 3 and x 4. By testing points inside and outside the interval 3, 4, we find that the expression is defined when x ≤ 3 or x ≥ 4. Thus, the domain is , 3 4, . 8 Chapter 0 57. 1 A Precalculus Review 1 3 1 6 4 2 2 1 4 2 0 59. 1 1 2 2 1 1 1 2 1 1 0 Therefore, the factorization is Therefore, the factorization is 2x3 x 2 2x 1 x 12x 2 x 1. x 3 3x 2 6x 2 x 1x 2 4x 2 61. Possible rational zeros: ± 8, ± 4, ± 2, ± 1 Using synthetic division for x 1, we have 1 2 1 1 1 10 2 8 8 1 2 8 0 63. Possible rational roots: ± 1, ± 2, ± 3, ± 6 Using synthetic division for x 1, we have the following. 1 Therefore, 1 6 1 11 5 6 6 1 5 6 0 Therefore, we have 10x 8 0 x3 6x 2 11x 6 0 x 1x 2 2x 8 0 x 1x 2 5x 6 0 x 1x 2x 4 0 x 1x 2x 3 0 x3 x2 x 1, 2, 4 3 1 2 1 1 65. Possible rational zeros: ± 6, ± 3, ± 2, ±1, ± 2, ± 2, ± 3, ± 3, ± 6 Using synthetic division for x 3, we have 3 6 11 18 19 21 6 6 6 7 2 0 x 1, 2, 3. 67. Possible rational roots: ± 1, ± 2, ± 4 Using synthetic division for x 4, we have the following. 4 Therefore, 3 4 3 4 4 4 1 1 1 0 Therefore, we have 19x 6 0 x3 3x 2 3x 4 0 x 36x 2 7x 2 0 x 4x 2 x 1 0. 6x 3 1 11x 2 x 33x 22x 1 0 x 3, 69. 0.0003x 2 1200 0 2 3, Since x 2 x 1 has no real solutions, x 4 is the only real solution. 12 1.8 105 71. 0.0003x 2 1200 x2 4,000,000 x 2000 units x2 1.0 104 x 1.8 109 1.8 105x x 2 x 1.8 105x 1.8 109 0 2 By the Quadratic Formula: x 1.8 105 ± 1.8 1052 4 1.8 109 2 1.8 105 ± 7.524 109 2 3.437 105H Section 0.5 Section 0.5 Fractions and Rationalization Fractions and Rationalization 1. x 5x x5 5 x1 x1 x1 x1 3. 2x 1 3x 2x 1 3x 5x 1 2 2 x2 2 x 2 x2 2 x 2 5. 2 1 x 2 1 2 x2 4 x 2 x 2x 2 x 2 x 2 7. 3 5 3 5 x3 3x x3 x3 9. 11. 2 x 2 x 2x 2 x x2 4 x 4 x2 Ax 2 x 2 Bx 2 Cx 2 2x 1 x 12x 2 Ax 2 Ax 2A Bx 2B Cx 2 2Cx C x 12x 2 A Cx 2 A B 2Cx 2A 2B C x 12x 2 A Bx C Ax 2 3 Bx Cx 6 2 x6 x 3 x 6x 2 3 1 2 x 2 1 2x 13. 2 x x 1 xx 2 1 A Bx 2 C 6Bx 3A 6C x 6x 2 3 x 2 2x 1 xx 2 1 x 2 2x 1 xx 2 1 x 12 xx 2 1 1 x x 1 x 2 x 2 x 2 5x 6 x 1x 2 x 2x 3 x 3 xx 1 x 1x 2x 3 x 2 3 x 1x 2x 3 17. 2 x3 A B C Ax 1x 2 Bx 2 Cx 12 x 1 x 12 x 2 x 12x 2 15. x2 3 x 1x 2x 3 x 2 x 2x 1 x 132 x 112 x 132 x2 x 132 19. 1 t 2t 2t 1 t 1 21 t 21 t 2 t 21 t 21 t 3t 21 t 21 t 21 t 9 10 21. Chapter 0 2xx 2 A Precalculus Review 1 x3 2xx 2 1 x3 x 2 1 x 2 1 1 x 2 23. x3 2x 1x 2 1 xx 2 2 x 2 132 x 2 212 x 2x 2 212 x 2 212x 2 2 x 2 x2 x2 x 1 25. x 2 1 x2 1 2 x 2x 2 2 x x 1 x 1 x 2x 1 xx 1 x 1 27. 2x 1 x x 2x 2 x 212 2x 212 2x 212 1 2xx 132 29. 31. 35. 39. 3x 4 2x 212 x2 2x x2 2x 2x 3 2x 332 2x 312 2x 332 2x 312 2x 3 3 6 3 6 6 6 x 2 2x2x 3 2x 332 3x 2 6x 2x 332 3xx 2 2x 332 36 6 6 2 49x 3 49x 3 x 2 9 x 2 9 x 2 9 x 2 9 33. 37. x x 4 5 14 2 x x 4 49x 3x 2 9 x 3x 3 49x 2 9 ,x3 x3 2x 2x 5 3 5 3 5 3 5 3 41. 1 6 5 x 4 x 4 5 14 2 xx 4 x4 14 2 14 2 514 2 14 4 14 2 2 1 6 5 2x5 3 25 3 x5 3 11 6 5 6 5 65 6 5 6 5 Section 0.5 4 x 2 43. 2 x x 2 2 x x 2 x x 2 x x 2 2 x x 2 x x 2 47. P 10,000, r 0.14, N 60 0.1412 1 1 0.1412 1 60 2 x 24 x 2 4 x 2 2x 2 4 2 4x x 4 x 232 x x 2 M 10,000 45. x4 Fractions and Rationalization $232.68 4 3x 2 4 x 232 x4 11 12 Chapter 0 A Precalculus Review Practice Test for Chapter 0 4 81 1. Determine whether is rational or irrational. 2. Determine whether the given value of x satisfies the inequality 3x 4 ≤ x2. (a) x 2 (b) x 0 8 (c) x 5 (d) x 6 3. Solve the inequality 3x 4 ≥ 13. 4. Solve the inequality x 2 < 6x 7. 5. Determine which of the two given real numbers is greater, 19 or 13 3. 6. Given the interval 3, 7, find (a) the distance between 3 and 7 and (b) the midpoint of the interval. 7. Solve the inequality 3x 1 ≤ 10. 8. Solve the inequality 4 5x > 29. 9. Solve the inequality 3 2x < 8. 5 10. Use absolute values to describe the interval 3, 5. 11. Simplify 12x3 . 4x2 12. Simplify 3x3 x , 0 x 0. 3 32x 4 y 3. 13. Remove all possible factors from the radical 3 1 1 14. Complete the factorization: 2x 113 4x 123 4x 113 15. Find the domain: 1 5 x 16. Factor completely: 3x 2 19x 14 17. Factor completely: 25x 2 81 18. Factor completely: x3 8 19. Use the Quadratic Formula to find all real roots of x 2 6x 2 0. Practice Test for Chapter 0 20. Use the Rational Zero Theorem to find all real roots of x 3 4x 2 x 6 0. 21. Combine terms and simplify: x 1 x 2 2x 3 x 1 22. Combine terms and simplify: 3x x 5 2x 5 x 2 23. Combine terms and simplify: 24. Rationalize the denominator: 25. Rationalize the numerator: x x x 2 2x 2 3y y 2 9 x x 7 14 Graphing Calculator Required 26. Use a graphing calculator to find the real solutions of x3 5x 2 2x 8 0 by graphing y x3 5x 2 2x 8 and finding the x-intercepts. 13
© Copyright 2026 Paperzz