MAC 2312 - Summer 2013 Homework #2 (Lectures 10-16) Integration Strategies Z 1. x4 9xdx + x2 + 4 Z √ 5 9 + ex dx Z 7x ln xdx √ x2 − 16 Z dt sin t + cos(2t) 2. 3. 4. 2 Z x sin x dx cos3 x Z sec6 x dx1 tan2 x 5. 6. Limits and L’Hospital’s Rule 7. lim t→0 1 1 − 2 t t +t 8. lim ln(3x2 + 5) − ln(x2 − 5) x→∞ p 9. lim x + x2 + 2x x→−∞ 10. lim (1 + x)1/x x→0 11. lim arctan(x2 − x4 ) x→∞ 12. lim x→0 tan x − x x3 Improper Integrals Z ∞ 7x arctan x dx (1 + x2 )2 ∞ ln x dx x3 13. 0 Z 14. 1 Z ∞ 1 dx 2 −∞ 1 + x Z ∞ 16. e−|x| dx 15. −∞ Sequences Determine whether the sequence converges or diverges. If it converges, find its limit. 17. an = (2n − 1)! (2n + 1)! 18. an = cos2 n 2n 19. an = n2 e−n 20. an = 7n! 3n 21. an = en + e−n e2n − 1 MAC 2312 - Summer 2013 Homework #2 (Lectures 10-16) 2 1/n 22. an = 1 + n 23. an = 5n + 3n−1 8n Series Determine whether the series converges or diverges. If it is convergent, find the sum. 24. ∞ X cosk 1 n=1 25. ∞ X 1 + 5n n=1 26. 8n ∞ X 3 2 − n 5 n n=1 27. ∞ X (−3)n−1 n=2 28. ∞ X n=1 4n arctan n
© Copyright 2026 Paperzz