Hindawi Publishing Corporation Advances in Materials Science and Engineering Volume 2013, Article ID 278934, 4 pages http://dx.doi.org/10.1155/2013/278934 Research Article Dopant Concentration and Effective Atomic Number of Copper-Doped Potassium Borate Glasses I. Hossain,1,2 N. K. Shekaili,2 and H. Wagiran2 1 2 Department of Physics, Rabigh College of Science and Arts, King Abdul Aziz University, Rabigh 21911, Saudi Arabia Department of Physics, Universiti Teknologi Malaysia, 81310 Skudai, Johor Darul Takzim, Malaysia Correspondence should be addressed to I. Hossain; [email protected] Received 5 May 2013; Revised 1 October 2013; Accepted 17 October 2013 Academic Editor: Achim Trampert Copyright © 2013 I. Hossain et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Copper-doped (0.5 mol%) and undoped potassium borate glasses have been prepared by the composition of (100-x)H3 BO3 + xK2 CO3 , where 10 โค x โค 30 mol % by the traditional melting quenching method. The structural pattern of glasses with different composition has been identified by X-ray diffraction (XRD). The glow curves were analysed to determine various characterizations of the TLDs. Identification of the compositions and concentrations and effective atomic number of undoped and doped potassium borate glass was carried out using scanning electron microscope analysis (SEM). The dopant concentrations are found to be 0.25 mol%, while Zeff are 11.42 and 10.48 for Cu-doped and undoped potassium borate glasses, respectively. 1. Introduction Borate compounds have been widely studied due to their features as glass formers and also on account of being very advantageous materials for radiation dosimetry application as discussed elsewhere [1, 2]. The main advantages of these compounds are an effective atomic number which is very close to that of human tissue (๐eff = 7.42), low cost, and easy preparation. This fact leads to use some borates ideal materials to develop medical and environmental dosimeter as discussed by Rao et al. [3]. A number of researchers investigated the thermoluminescence (TL) properties of lithium tetraborate: Li2 B4 O7 (LTB) doped materials with different activators such as Mn as discussed by Annalakshmi et al. [4] and Cu as discussed by Corradi et al. [5]. Kinetic parameters of some tissue equivalent TL materials were investigated โas discussed by Kitis et al. [6]โ. Calcium-doped and undoped borate glass system for TL dosimeter were studied by Rojas et al. [2]. The electron paramagnetic resonance spectroscopy of the Mn2+ and Cu2+ centers in the glasses with Li2 B4 O7 and KLiB4 O7 compositions was investigated by Padlyak et al. [7]. TL and optical absorption properties of neodymiumdoped yttrium aluminoborate and yttrium calcium borate glasses were studied by Yoshimura et al. [8]. Recently, we have investigated the high dose (range: 0.5โ4.0 Gy) photon irradiation response of K2 B4 O7 , Cu system, aiming to develop new host materials for thermoluminescence dosimeter (TLD) [9]. To date, to the best of our knowledge, no report has been published on dopant concentration, effective atomic number, and a TL study of copper-doped potassium borate glasses. 2. Experimental 2.1. Sample Preparation. The samples of potassium borate and Cu-doped potassium borate glass were prepared by a melt quenching technique. These five samples have been made by mixing different compositions of potassium carbonate (mole 10%, 15%, 20%, 25%, and 30%) and boric acid (mole 90%, 85%, 80%, 75%, and 70%) after they were weighed. The mass of each sample was measured using an electronic balance (PAG, Switzerland). The best copper-dopped potassium borate glasses was formed using potassium borate samples (mole 20% potassium carbonate and mole 80% boric acid) and doped with 0.5 mole% of pure copper (Cu). Before the melting process, the powders were mixed and homogenized by milling the powders for 30 minutes. Then, the samples Advances in Materials Science and Engineering 10 Intensity (a.u.) Intensity (a.u.) 2 20 30 40 50 60 70 80 2๐ Figure 1: XRD pattern of composition [10%K2 CO3 + 90%H3 BO3 ], polycrystalline. (undoped) were melted in an alumina crucible in an electric furnace at a temperature of 1000โ C for 30 minutes depending on composition until a clear homogenous melt was obtained. The Cu-doped potassium borate samples were prepared by using high temperature furnace with a temperature of 1200โ C for 30 minutes. Then the molten samples were poured onto a steel plate into another furnace to be annealed at a temperature of 300โ C for 3 hours. This furnace was used with a different temperature for melting. The samples were left to be cooled inside the furnace until they reached room temperature to avoid thermal stress. 2.2. Annealing and Exposure to Radiation. In the current investigation a Perspex sheet (tough transparent plastic material) contains 100 wells was covered by a thick black cover to avoid any light signal during transportation and storage or ultraviolet radiation from sunlight which can give rise to the TL signal. Finally the Perspex sheet which contains the Cu-doped and undoped potassium borate glass all together was placed on the beam axis at a depth of 10 cm in a solid phantom. The glass samples were exposed to 6 MV photon irradiation emitted from Linear Accelerator (LINAC) Primus MLC 3339 provided by the Department of Radiotherapy and Oncology, Hospital Sultan Ismail, Johor Bahru, Malaysia. The beam field size was set to 10 × 10 cm2 and placed at the standard source surface distance (SSD) of 100 cm. The dose delivered by LINAC machine was 20 to 400 MU (Monitor Unit) using a constant dose rate of 200 MU/min. Each 50 MU dose is equivalent to 0.5 Gy and it took 15 seconds for complete exposure. The readout of the dosimeters was done 24 hours after irradiation. This period of time is very useful to eliminate the lower traps deliberately and also allows time for the lower energy thermoluminescence to decay away. The TL response was read out by using TLD Reader 4500 in Ibnu Sina Institute. The preheat temperature was 50โ C for 10 seconds and the used readout temperature was 300โ C for 33 seconds with a heating rate of 25โ C Sโ1 and finally an annealing temperature of 300โ C was applied for 10 seconds [9]. Consequently, the characteristics of TLD were discussed and analyzed as follows. 10 20 30 40 50 60 70 80 2๐ Figure 2: XRD pattern of composition [30%K2 CO3 + 70%H3 BO3 ], glass sample. 3. Results and Discussions 3.1. X-Ray Diffraction (XRD) Analysis. In this experiment, XRD technique has been done for all the different compositions of samples previously prepared of undoped potassium borate. The measurements were carried out using Siemens Diffractometer D5000 system to analyze the structure of the samples whether amorphous or crystalline state. Two samples composed of 90% H3 BO3 (boric acid) + 10% K2 CO3 (potassium carbonate) and 85% H3 BO3 (boric acid) + 15% K2 CO3 (potassium carbonate) are firmly crystalline by XRD analysis. Figure 1 shows XRD pattern of polycrystalline by the composition of 90% boric acid and 10% potassium carbonates. On the other hand the XRD analysis showed that the other three samples which are composed of 80% boric acid and 20% potassium carbonate; 75% boric acid and 25% potassium carbonate; 70% boric acid and 30% potassium carbonate are glasses since there are broad peaks appearing on the spectra pattern as shown in Figure 2. 3.2. TL Glow Curve. Thermoluminescence light emission which is known as the thermoluminescence glow curve is defined as the intensity of luminescence as a function of temperature, which is possible to exhibit several maxima. This glow curve varies with the mode of heating and heating temperature. The area under the curve represents the radiation energy deposited. Figures 3 and 4 present the glow curve for Cu-doped and undoped potassium borate glass. The red line which appears in the graph is the readout temperature which represents 300โ C from the time-temperature profile set up for the TLD reader. It is clear that the glow curve of Cu-dopped potassium borate glasses is better than undoped potassium borate glasses. 3.3. Scanning Electron Microscope Analysis (SEM). Scanning electron microscope (SEM) technique has been done for all the three different compositions of the glass samples which were characterized by the XRD. The measurements were carried out to identify the real composition of the materials in the glass samples and to detect if there is any Advances in Materials Science and Engineering 3 600 500 50.0 400 40.0 300 30.0 200 20.0 100 10.0 0.0 50 100 Channel Table 2: Identification of the compositions and concentrations of Cu-doped potassium borate glass by SEM. Temperature (โ C) Intensity (nA) 60.0 0 200 150 Element BK OK KK Cu K Total Weight % 51.85 32.34 14.64 1.17 100 ๐๐ 0.5185 0.3234 0.1464 0.0117 1.0 At% 66.52 28.04 5.19 0.25 100 ๐ 5 8 19 29 ๐ด๐ค 10.811 15.999 39.098 63.546 ๐ด ๐ค : the atomic weight, ๐: the atomic number of the element, ๐๐ : the fractional weight, and At%: the atomic percentage. Figure 3: The glow curve for the Cu-doped potassium borate glass following 6 MV photon irradiations. Intensity (nA) 500 400 2.0 300 200 1.0 100 50 100 Temperature (โ C) 600 3.0 0.0 found to be 0.25 mol% as shown in Table 2. The effective atomic number of undoped glass was found to be 10.48 by the following formula: 0 200 150 Channel Figure 4: The glow curve for the undoped potassium borate glass following 6 MV photon irradiations. Table 1: Identification of the compositions and concentrations of undoped potassium borate glass by SEM. Element BK OK KK Total Weight % 26.24 61.51 12.25 100 ๐๐ 0.2623 0.6151 0.1225 1.0 ๐ 5 8 19 ๐ด๐ค 10.811 15.999 39.098 36.546 ๐ด ๐ค : the atomic weight, ๐: the atomic number of the element, and ๐๐ : the fractional weight. other contaminated material which may affect the glass samples. The result showed that all the glass samples were contaminated by either silica (SiO2 ) or alumina (AL2 O3 ) or both except the third glass which was composed of 80% boric acid + 20% potassium carbonate. Table 1 shows the actual composition of the glass sample. The former glass samples were chosen to be doped with copper (Cu) in order to study its TLD characterization. SEM technique also has been done for the Cu-doped potassium borate glass to identify the elemental compositions of the sample and the concentration of each composition as shown in Table 2. 3.4. Dopant Concentration in Mol% and ๐eff . The SEM technique was used to determine the dopant concentration. The dopant concentration of copper (Cu) on the Cu-doped potassium borate glass was presented by At% which was 1/๐ (๐eff ) ๐eff = (๐1 ๐1๐ + ๐2 ๐2๐ + ๐3 ๐3๐ + โ โ โ + ๐๐ ๐๐๐ ) , (1) where ๐1 , ๐2 , ๐3 , . . . ๐๐ are the weight fraction contributions of each element in the glass depend on the total number of electrons in the mixture and ๐๐ is the atomic number of the element-๐. The value of ๐ adopted for photon purposes is 2.94. Moreover the Cu-doped potassium borate glass was found to have ๐eff = 11.42. This study indicates that the effective atomic numbers of Cu-doped and undoped potassium borate glasses were higher than the soft tissue which is 7.4. These results indicated that Cu-doped and undoped potassium borate glasses were not tissue equivalent. 4. Conclusions Out of five different compositions, we have found three glass samples composed of 80% boric acid and 20% potassium carbonate; 75% boric acid and 25% potassium carbonate; 70% boric acid and 30% potassium carbonate by XRD technique. The glow curve of Cu-doped potassium borates glass is better than undoped sample. The effective atomic numbers are 11.42 and 10.48 for Cu-doped and undoped potassium borate glasses, respectively, which are higher than ๐eff in soft tissue 7.4. The Cu-doped potassium borate glass has been evaluated to have dopant concentration of 0.25 mol% and this dopant of Cu-doped glass has the capability of producing luminescence as well as good TL response on irradiation. Acknowledgments This work was funded by the Deanship of Scientific Research (DSR), King Abdulaziz University, Jeddah, Saudi Arabia, under Grant no. 662-010-D1433. The authors, therefore, acknowledge DSR technical and financial support. The authors would like to thank Mr. Hasan Ali, Hospital Sultan Ismail, Johor Bahru Malaysia, for helping in performing the irradiations and Universiti Teknologi Malaysia (UTM) for providing research facilities. 4 References [1] M. Santiago, C. Grasseli, E. Caselli, M. Lester, A. Lavat, and F. Spano, โThermoluminescence of SrB4 O7 :Dy,โ Physica Status Solidi A, vol. 185, no. 2, pp. 285โ289, 2001. [2] S. S. Rojas, K. Yukimitu, A. S. S. de Camargo, L. A. O. Nunes, and A. C. Hernandes, โUndoped and calcium doped borate glass system for thermoluminescent dosimeter,โ Journal of NonCrystalline Solids, vol. 352, no. 32โ35, pp. 3608โ3612, 2006. [3] G. V. Rao, P. Y. Reddy, and N. Veeraiah, โThermoluminescence studies on Li2 O-CaF2 -B2 O3 glasses doped with manganese ions,โ Materials Letters, vol. 57, no. 2, pp. 403โ408, 2002. [4] O. Annalakshmi, M. T. Jose, and G. Amarendra, โDosimetric characteristics of manganese doped lithium tetraborate - An improved TL phosphor,โ Radiation Measurements, vol. 46, no. 8, pp. 669โ675, 2011. [5] G. Corradi, V. Nagirnyi, A. Kotlov et al., โInvestigation of Cu-doped Li2 B4 O7 single crystals by electron paramagnetic resonance and time-resolved optical spectroscopy,โ Journal of Physics, vol. 20, Article ID 025216, 2008. [6] G. Kitis, C. Furetta, M. Prokic, and V. Prokic, โKinetic parameters of some tissue equivalent thermoluminescence materials,โ Journal of Physics D, vol. 33, p. 1252, 2000. [7] B. V. Padlyak, W. Wojtowicz, V. T. Adamiv, Y. A. V. Burak, and I. M. Teslyuk, โEPR spectroscopy of the Mn2+ and Cu2+ centres in lithium and potashium-lithium tetroborate glasses,โ Acta Physica Polonica A, vol. 117, p. 112, 2010. [8] E. M. Yoshimura, C. N. Santos, A. Ibanez, and A. C. Hernandes, โThermoluminescent and optical absorption properties of neodymium doped yttrium aluminoborate and yttrium calcium borate glasses,โ Optical Materials, vol. 31, no. 6, pp. 795โ799, 2009. [9] I. Hossain, N. K. Shekali, and H. Wagiron, โThermoluminescence response of copper-doped potassium borate glasses subjected to 6 Megavolt photon irradiation,โ subjected to Journal of Applied Spectroscopy. Advances in Materials Science and Engineering Journal of Nanotechnology Hindawi Publishing Corporation http://www.hindawi.com Volume 2014 International Journal of International Journal of Corrosion Hindawi Publishing Corporation http://www.hindawi.com Polymer Science Volume 2014 Hindawi Publishing Corporation http://www.hindawi.com Volume 2014 Smart Materials Research Hindawi Publishing Corporation http://www.hindawi.com Journal of Composites Volume 2014 Hindawi Publishing Corporation http://www.hindawi.com Volume 2014 Journal of Metallurgy BioMed Research International Hindawi Publishing Corporation http://www.hindawi.com Volume 2014 Nanomaterials Hindawi Publishing Corporation http://www.hindawi.com Volume 2014 Submit your manuscripts at http://www.hindawi.com Journal of Materials Hindawi Publishing Corporation http://www.hindawi.com Volume 2014 Journal of Nanoparticles Hindawi Publishing Corporation http://www.hindawi.com Volume 2014 Nanomaterials Journal of Advances in Materials Science and Engineering Hindawi Publishing Corporation http://www.hindawi.com Volume 2014 Journal of Hindawi Publishing Corporation http://www.hindawi.com Volume 2014 Journal of Nanoscience Hindawi Publishing Corporation http://www.hindawi.com Scientifica Hindawi Publishing Corporation http://www.hindawi.com Volume 2014 Journal of Coatings Volume 2014 Hindawi Publishing Corporation http://www.hindawi.com Crystallography Volume 2014 Hindawi Publishing Corporation http://www.hindawi.com Volume 2014 The Scientific World Journal Hindawi Publishing Corporation http://www.hindawi.com Volume 2014 Hindawi Publishing Corporation http://www.hindawi.com Volume 2014 Journal of Journal of Textiles Ceramics Hindawi Publishing Corporation http://www.hindawi.com International Journal of Biomaterials Volume 2014 Hindawi Publishing Corporation http://www.hindawi.com Volume 2014
© Copyright 2026 Paperzz