SOLUTIONS PULLOUT Worksheets Term 1 (April to September) Mathematics Class 10 OSWAAL BOOKS “Oswaal House” 1/11, Sahitya Kunj, M.G. Road, AGRA-282002 Ph.: 0562-2857671, 2527781, Fax : 0562-2854582, 2527784 email : [email protected], website : www.OswaalBooks.com CONTENTS Unit-I : Number System 1. Real Numbers Summative Assessment Ø Worksheets 1 - 11 3 - 14 Formative Assessment Ø Worksheet 12 14 - 14 Unit-II : Algebra 2. 3. Polynomials Summative Assessment Ø Worksheets 12 - 23 15 - 29 Formative Assessment Ø Worksheet 24 29 - 30 Pair of Linear Equations in two Variables Summative Assessment Ø Worksheets 25 - 37 31 - 50 Formative Assessment Ø Worksheet 38 50 - 51 Unit-III : Geometry 4. Triangles Summative Assessment Ø Worksheets 39 - 52 52 - 71 Formative Assessment Ø Worksheet 53 72 - 72 Unit-IV : Trigonometry 5. Introduction to Trigonometry and Trigonometric Identities Summative Assessment Ø Worksheets 54 - 76 73 - 101 Formative Assessment Ø Worksheet 77 101 - 102 Unit-V : Statistics 6. Statistics Summative Assessment Ø Worksheets 78 - 95 103 - 128 Formative Assessment Ø Worksheet 96 129 - 129 (v) CHAPTER Term-I 1 Summative Assessment Unit I Number System Real Numbers SUMMATIVE ASSESSMENT WORKSHEET-1 SECTION A 1. We know that a × b = L.C.M. × H.C.F. = 200 × 5 = 1000 1 2. Since 16 = ± 4 So it is a rational number. 1 SECTION B 3. Given H.C.F. L.C.M. First term Second term = 18 =? = 306 = 1314 1 we know that First × Second term = L.C.M. × H.C.F. 306 × 1314 = L.C.M. × 18 L.C.M. = 306 × 1314 = 22388 18 1 SECTION C 4. First we will find out HCF (1530, 1365) 1530 = 1365 × 1 + 165 1365 = 165 × 8 + 45 165 = 45 × 3 + 30 45 = 30 × 1 + 15 30 = 15 × 2 + 0 Now HCF (1530, 1365) = 15 Now lets find out HCF (1305, 15) 1305 = 15 × 87 + 0 ∴ HCF (1530, 1365, 1305) = 15 1 SECTION D 5. (a) Maximum number of parallel rows of each class Now, 104 96 Hence HCF (104, 96) S O L U T I O N S = HCF of 104 and 96 = 2 × 2 × 2 × 13 = 2 × 2 × 2 × 12 =8 1 1 P-3 (b) No. of the students of class X in 1 row = 104 = 13 8 96 = 12 8 No. of students of class IX in 1 row = 1 (c) To minimise the tendency of the students to copy and to teach them value of honesty. SUMMATIVE ASSESSMENT 1 WORKSHEET-2 SECTION A 1. 145 = 29 × 5 Hence, number of prime factors of 145 is 2. 2. p = a3b2 q = ab3c2 Hence HCF of p and q = ab2. 3. Decimal expansion of 23 1 1 1 will be terminating 23 52 SECTION B 1656 4025 ( 2 –3312 713 1656 ( 2 –1426 230 713 (3 – 690 4. 23 230 (10 –230 0 2 Hence HFC (1656, 4025) = 23. SECTION C 5. z = 2 × 17 = 34 ½ y = 2 × 34 = 68 ½ x = 2 × 68 = 136 ½ Yes, value of x can be found without finding value of y or z as x = 2 × 2 × 2 × 17, which are prime factors of x. 1½ SECTION D 6. Time required by 3 children to complete a card together = LCM of 10, 16, 20 Now 10 = 2 × 5 16 = 2 × 2 × 2 × 2 20 = 2 × 2 × 5 So required LCM = 2 × 5 × 2 × 2 × 2 These children possess following values : Caring respect for elders, creative and helpful. P-4 M A T H E M A T I C S -- X 1 1 1 1 T E R M – 1 SUMMATIVE ASSESSMENT WORKSHEET-3 SECTION A 1. A rational number can be expressed as a terminating decimal of the denominator has factors 2 or 5 only. 1 2. We know that a × b = HCF × LCM 1800 = 12 × LCM LCM = 1800 = 150 12 1 SECTION B 3. If the number 4n, were to end with the digit zero, then it should be divisible by 5. 1 But 4n = (22)n = 22n ⇒ Only prime in the factorization of 4n is 2. So by fundamental theorem of Arithmetic, there are no other primes in the factorisation of 4n.½ ⇒ 4n can never end with the digit zero. ½ SECTION C 4. Let us assume on the contrary that 4 − 3 2 is rational. Then, there exist co-prime possible integers a and b such that a 1 4−3 2 = b a = 3 2 b 4b − a = 2 3b 4− ⇒ ⇒ ⇒ 1 [Q a, b are integers 2 is rational This, contradicts the fact that 4b − a is a rotational number] 3b 2 is irrational. So, our assumption is wrong. Hence 4 − 3 2 is an irrational number. 1 SECTION D 5. Let the number of columns be x. x is the largest number, which should divide both 104 and 96 104 = 96 × 1 + 8 96 = 8 × 12 + 0 ∴ HCF of 104 and 96 is 8 Hence, 8 columns are required. SUMMATIVE ASSESSMENT 1 1 1 1 WORKSHEET-4 SECTION A 3 3 375 3 × 53 = 3 = 3 3 = 103 = 0·375 8 2 2 ×5 1. 2. 6423 4 = 6243 × 2 4 4 = 12486 2 ×5 2 ×5 104 Hence decimal expansion of the rational number will terminate after 4 places of decimal. S O L U T I O N S 3 1 1 P-5 SECTION B 3 255 867 765 3. 1 2 102 255 204 2 51 102 102 0 ∴ Required HCF = 51. 1 SECTION C 4. Let 5 be a rational number. ∴ a , (a, b are co-prime integers and b ≠ 0.) b a =b 5 5 = a2 = 5b2 ⇒ 5 is a factor of ⇒ 5 is a factor of a Let a = 5c, (c is some integer) ⇒ 25c2 = 5b2 ⇒ 5c2 = b2 2 ⇒ 5 is a factor of b 5 is a factor of b ∴ 5 is a common factor of a, b a2 1 But this contradicts the fact that a, b are co-primes. ∴ 5 is irrational Let 2 – ∴ 2– ⇒ 5 =a 2–a = 2 – a is rational, so is But 1 5 be rational 5 5. 5 is not rational ⇒ contradiction ∴ 2– 1 5 is irrational. SECTION D 5. Let ∴ 2 be a rational number. a , b a = 2b 2 = (a, b are co-prime integers and b ≠ 0) Squaring, a2 = 2b2 2 ⇒ 2 divides a ⇒ 2 divides a So we can write a = 2c for some integer c, substitute for a, 2b2 = 4c2, b2 = 2c2 This means 2 divides b2, so 2 divides b. ∴ a and b have at least ‘2’ as a common factor. But this contradicts, that a, b have no common factors other than 1. P-6 M A T H E M A T I C S -- X 1 1 T E R M – 1 ∴ Our supposition is wrong. Hence, 2 is irrational. 3 Let 2 = a, where a is a rational a 2 =3 3 2 = a 1 3 is rational but 2 is not rational. a ∴ Our supposition is wrong. ∴ 3 2 1 is irrational. SUMMATIVE ASSESSMENT WORKSHEET - 5 SECTION A 1. According to Euclid’s division Lemma for any positive interger and 3 there exist unique integers q and r such that a = 3q + r, where r must satisfy 0 ≤ r < 3. 1 2. 1 = 1 × 1, 2 = 1 × 2, 3 = 1 × 3, 4 = 2 × 2, 5 =1×5 6 = 2 × 3, 7 = 1 × 7, 8 = 2 × 2 × 2, 9 = 3 × 3, 10 = 2 × 5. Hence the least number that, divisible by all the numbers from 1 to 10 i.e., L.C.M. = 2 × 2 × 2 × 3 × 3 × 5 × 7 = 2520. 1 SECTION B 3. By Euclid’s division algorithm a = bq + r Take b =4 ∴ r = 0, 1, 2, 3 So, a = 4q, 4q + 1, 4q + 2, 4q + 3 Clearly, a = 4q, 4q + 2 are even, as they are divisible by 2. But 4q + 1, 4q + 3 are odd, as they are not divisible by 2. ∴ any positive odd integer is of the form (4q + 1) or (4q + 3). 1 1 SECTION C 4. (i) The number of rooms will be minimum if each room accomodates maximum number of participants. Since in each room the same number of participants are to be seated and all of them must be of the same subject. Therefore, the number of paricipants in each room must be the HCF of 60, 84 and 108. The prime factorisations of 60, 84 and 108 are as under 60 = 22 × 3 × 5 84 = 22 × 3 × 7 108 = 22 × 33 Hence, HCF = 22 × 3 = 12 Therefore, in each room 12 participants can be seated. 1 ∴ Number of rooms required = = Total number of participants 12 60 + 84 + 108 252 = = 21. 12 12 1 (ii) HCF of numbers. ½ (iii) Liberty and equality are the pay marks of democracy. ½ S O L U T I O N S P-7 SECTION D a = 4q + r, 0 ≤ r < 4 5. Let ⇒ 1 a = 4q, 4q + 1, 4q + 2 or 4q + 3 Case I. a2 = (4q)2 = 16q2 = 4(4q2) = 4m, m = 4q2 Case II. a2 = (4q + 1)2 = 16q2 + 8q + 1 = 4(4q2 + 2q) + 1 ½ = 4m + 1, where m = 4q2 + 2q a2 Cases III. = (4q + = a2 Cases IV. 2)2 4(4q2 = (4q + = 16q2 ½ + 16q + 4 + 4q + 1) = 4m, where m = 4q2 + 4q + 1 3)2 = 16q2 ½ + 24q + 9 = 4(4q2 + 6q + 2) + 1 = 4m +1, where m = 4q2 + 6q + 2 ½ From cases I, II, III and IV, we conclude that the square of any +ve integer is of the form 4m or 4m + 1. 1 SUMMATIVE ASSESSMENT WORKSHEET-6 SECTION A 1. The smallest prime number = 2 and the smallest composite number = 4. Hence required HCF (4, 2) = 2 1 3 has terminating decimal expansion. 5 3. If q is some integer, then any positive odd integer is of the form 6q + 1. 2. 1 1 SECTION B 2 × 3381 = 4. 6762 2 ½ 3381 3 ½ 1127 = 7 × 161 7 161 7 23 = 161 7 ½ ∴ Composite number x = 6762. ½ SECTION C 5. Let Subtracting, x 10000 x 10 x 9990 x x = P-8 1 = 0·3178178178... = 3178.178178... = 3.178178... = 3175 1 3175 635 = . 9990 1998 M A T H E M A T I C S -- 1 X T E R M – 1 SECTION D 6. Let 2 be a rational number a 2 = b, So ⇒ [Q a, b are co-prime integers and b ≠ 0] a = a2 2b = 2b2 Squaring ½ ⇒ 2 divides a2 ⇒ 2 divides a so we can write a = 2c for same integer c, substitute for a, 2b2 = 4c2 ⇒ b2 = 2c2. ½ This means 2 divides b2, so 2 divides b. ∴ a and b have atleast ‘2’ as a common factor but this contradicts, that a, b have no common factors other than 1. ∴ Our supposition is wrong. ½ Hence 2 is irrational. p 5 + 3 2 = q [HCF (p, q) = 1] Let 2 = 2 is irrational but p − 5q 3q p − 5q is a rational. 3q ½ Irrational ≠ rational ⇒ Contradiction. ∴ 5 + 3 2 is an irrational number. 1 SUMMATIVE ASSESSMENT WORKSHEET - 7 SECTION A 1. 6 6 6 × 23 6 × 23 = = = · 1250 2 × 54 24 × 54 104 Hence decimal expansion of the rational number will terminate after 4 places of decimal. 2. The decimal expansion of 13 15 2 × 510 is terminating. 1 1 SECTION B 3. ⇒ 240 = 228 × 1 + 12 228 = 12 × 19 + 0 HCF of 240 and 228 = 12. 1 1 SECTION C 4. (i) In order to arrange the books as required, we have to find the largest number that divides 96, 240 and 336 exactly, clearly, such a number is their HCF. We have, 96 = 25 × 3 240 = 24 × 3 × 5 336 = 24 × 3× 7 and ∴ HCF of 96, 240 and 336 is 24 × 3 = 48 S O L U T I O N S P-9 1 So, there must be 48 books in each stack. ∴ Number of stacks of English books = 96 =2 48 Number of stacks of Hindi books = 240 =5 48 Number of stacks of Sociology books = 336 =7 48 1 (ii) HCF of numbers. ½ (iii) Cleanliness has been discussed in this question, it is a good habit that leads to good health. ½ SECTION D 5. Let x be any positive integer, then it is of the form 3q or 3q + 1 or 3q + 2. Squaring, we get (3q)2 = 9q2 = 3 × 3q2 = 3m, m = 2q2 (3q + 1) = 9q2 + 6q + 1 = 3(3q2 1 + 2q) + 1 = 3m + 1, m = 3q2 + 2q (3q + 2)2 = 9q2 + 12q + 4 = 9q2 1 + 12q + 3 + 1 = 3(3q2 + 4q + 1) + 1 = 3m + 1, m = 3q2 + 4q + 1 1 ⇒ Square of any positive integer is of the form 3m or 3m + 1 for some integer m. SUMMATIVE ASSESSMENT 1 WORKSHEET-8 SECTION A 1. 189 189 189 × 23 189 × 23 = 3 = 3 = · 125 5 5 × 23 (10)3 The decimal expansion of 189 will terminate after 3 places of decimal. 125 1 93 93 31 = 2 3 = 2 2 1500 3×5×2 ×5 2 ×5 Hence, decimal representation is terminating. 3. HCF of 33 × 5 and 32 × 52 = 32 × 5 = 9 × 5 = 45. 2. 1 1 SECTION B 4. 90 144 HCF LCM = 2 × 32 × 5 = 24 × 32 = 2 × 32 = 18 = 24 × 32 × 5 = 720. 1 1 SECTION C 5. Let n be any +ve integer, then n = 3q + r, r = 0, 1, 2 n = 3q or 3q + 1 or 3q + 2 P-10 M A T H E M A T I C S -- ½ ½ X T E R M – 1 Case I. When Case II. When n = 3q, which is divisible by 3 n + 2 = 3q + 2, which is not divisible by 3 n + 4 = 3q + 4, which is not divisible by 3 ½ n = 3q + 1, which is not divisible by 3 n + 2 = 3q + 1 + 2 = 3q + 3, which is divisible by 3 n + 4 = 3q + 1 + 4 = 3q + 5, which is not divisible by 3 ½ Case III. When n = 3q + 2, which is not divisble by 3 n + 2 = 3q + 2 + 2 = 3q + 4, which is not divisible by 3 n + 4 = 3q + 2 + 4 = 3q + 6, which is divisible by 3 Case I, II and III ⇒ One and only one out of n, n + 2 or n + 4 is divisible by 3. ½ ½ SECTION D 6. The greatest number of cartons is the HCF of 144 and 90 144 = 24 × 32 90 = 2 × 32 × 5 HCF = 2 × 32 = 18 ∴ The greatest number of cartons = 18. SUMMATIVE ASSESSMENT 1 1 1 1 WORKSHEET-9 SECTION A 1. The product of a non-zero rational number and an irrational number is always irrational. 2. The product of two irrational numbers is always a non zero number. 1 1 SECTION B 3. 18018 2 9009 a 3003 3 1001 b 143 c 9009 =3 3003 1001 b = =7 143 143 = 11 × 13, so c = 11 or 13 d = 13 or 11. a = Since S O L U T I O N S d ½ ½ ½ ½ P-11 SECTION C 3. (i) Required number of mintues is the LCM of 18 and 12. 18 = 2 × 32 and 12 = 22 × 3 ∴ LCM of 18 and 12 = 22 × 32 = 36 Hence, Ravish and Priya will meet again at the starting point after 36 minutes. (ii) LCM of numbers (iii) Healthy competition is necessary for personal dvelopment and progress. 1 1 1 1 SECTION D 5. Any positive integer is of the form 2q or 2q + 1, for some integer q. ∴ When n = 2q n2 – n = (2q)2 – 2q = 2q(2q – 1) = 2m, when m = q(2q – 1) Which is divisible by 2. When n = 2q + 1 n2 – n = (2q + 1) (2q + 1 – 1) = 2q (2q + 1) = 2m, when m = q(2q + 1) Which is divisible by 2. Hence, n2 – n is divisible by 2 for every positive integer n. SUMMATIVE ASSESSMENT 1 1 1 1 WORKSHEET-10 SECTION A 1. (C) It is clear that 0·102003000..........is non-terminating non-repeating decimal, so it cannot be expressed in the form of p · q 1 2. (C) If n is an odd number, then (n2 – 1) is divisible by 8. 1 SECTION B 3. No. 15 does not divide 175. LCM is exactly divisible by their HCF. ∴ Two numbers cannot have their HCF as 15 and LCM as 175. 1 1 SECTION C 4. By Euclid’s division algorithm, ⇒ P-12 510 92 50 42 8 HCF (510, 92) 92 510 LCM HCF × LCM Product of 2 numbers HCF × LCM = 92 × 5 + 50 = 50 × 1 + 42 = 42 × 1 + 8 =8×5+2 = 2 × 4 + 0. =2 = 22 × 23 = 2 × 3 × 5 × 17 = 22 × 23 × 3 × 5 × 17 = 23460 = 2 × 23460 = 46920 = 510 × 92 = Product of two numbers. M A T H E M A T I C S -- 1 1 1 X T E R M – 1 SECTION D 5. Let 3 − 5 is a rational number p 3− 5 = q, q ≠ 0 ∴ p 3q − p 5 =3– q = q ∴ 3q − p is rational number. q 1 5 is a irrational number. Since irrational number cannot be equal to rational number. ∴ Our assumption is wrong. 1 ∴ 3 − 5 is an irrational number. 1 But SUMMATIVE ASSESSMENT 1 WORKSHEET-11 SECTION A 1. Since LCM of a and b = p therefore LCM of 3a and 2b = 3 × 2 × p = 6p. 1 2. 1 3. 5 + 2 − 7 is an irrational number. 3 is the rational number between 2 2 and 3. 1 SECTION B 4. (7 × 13 × 11) + 11 = 11 (7 × 13 + 1) = 11 (91 + 1) = 11 × 92 = 11 × 2 × 2 × 23 which is a composite number (more than one prime factors) and (7 × 6 × 5 × 4 × 3 × 2 × 1) + 3 = 3 (7 × 6 × 5 × 4 × 2 × 1 + 1) = 3 × (1681) = 3 × 41 × 41 which is a composite number (more than one prime factors) 1 1 SECTION C 5. We have 117 = 65 × 1 + 52 65 = 52 × 1 + 13 52 = 13 × 4 + 0 Hence, ∴ ⇒ ∴ Now, S O L U T I O N S 1 HCF = 13 65m – 117 = 13 65m = 117 + 13 = 130 130 =2 65 65 = 13 × 5 117 = 32 × 13 LCM = 13 × 5 × 32 = 585 m = 1 1 P-13 SECTION D 6. n3 – n = n(n2 – 1) = n(n + 1) (n – 1) = (n – 1) n(n + 1) = product of three consecutive positive integers. Now, we have to show that the product of three consecutive positive integers is divisible by 6. We know that any positive integer a is of the form 3q, 3q + 1 or 3q + 2 for some integer q. Let a, a + 1, a + 2 be any three consecutive integers. ½ Case I. If a = 3q. a(a + 1) (a + 2) = 3q(3q + 1) (3q + 2) = 3q (even number, say 2r) = 6qr, (Q Product of two consecutive integers (3q + 1) and (3q + 2) is an even integer) which is divisible by 6. 1 Case II. If a = 3q + 1. ∴ a(a + 1) (a + 2) = (3q + 1) (3q + 2) (3q + 3) = (even number say 2r) (3) (q + 1) = 6 r (q + 1), 1 which is divisible by 6. Case III. If a = 3q + 2. ∴ a(a + 1) (a + 2) = (3q + 2) (3q + 3) (3q + 4) = multiple of 6 for every q = 6r (say), 1 which is divisible by 6. Hence, the product of three consecutive integers is divisible by 6. ½ FORMATIVE ASSESSMENT WORKSHEET-12 Objective Type Questions 1. (D) 2. (C) 3. (B) 4. (B) 5. (B) Oral Questions 1323 1323 = · (63 × 352 ) 23 × 33 × 52 × 72 In the denominator 3 and 7 prime factors are involved hence the number is non-terminating. 2. Product of numbers = H.C.F. × L.C.M. 1. H.C.F. = 480 × 672 = 96. 3360 3. H.C.F. of 616 and 32 will be the answer 616 = 2 × 2 × 2 × 11 × 7 32 = 2 × 2 × 2 × 2 × 2 H.C.F. = 2 × 2 × 2 = 8 Fill in the blanks 1. Algorithm 2. Rational 3. Lemma 4. Every composite number can be expressed as a product of primes and this decomposition is unique, apart from the order in which the prime factors occur. 5. Non-terminating. 6. 2 and 5 7. Unique 8. Euclid’s Division Algorithm 9. Product. ●● P-14 M A T H E M A T I C S -- X T E R M – 1 CHAPTER Unit II 2 Algebra Polynomials SUMMATIVE ASSESSMENT WORKSHEET-13 SECTION A 1. From the graph it is clear that the curve cuts the x-axis at four places, so number of zeroes is 4. 1 2. At the x-axis y = 0, so point on the x-axis is given by 2x – 5 = 0 ⇒ x = 5 So, required point is , 0 · 2 5 2 1 SECTION B 3. Since a and b are the zeroes of the polynomial, then α+β =– Coefficient of x Coefficient of x2 −1 α + β = – =1 1 ⇒ Given α–β = 9 From (1) and (2) α = 5, β = – 4 αβ = Again ⇒ ...(1) 1 ...(2) Constant Coefficient of x2 αβ = – k (5) (– 4) = – k k = 20 1 SECTION C f(x) = 4x2 + 4x – 3 3. f FG 1 IJ H 2K = 4 FG 1 IJ + 4FG 1 IJ − 3 H 4 K H 2K =1+2–3=0 FG 3 IJ H 2K f − = 4 FG 9 IJ + 4FG − 3 IJ − 3 H 4 K H 2K =9–6–3=0 S O L U T I O N S P-15 1 3 ∴ ,− are zeroes of polynomial 4x2 + 4x – 3 2 2 1 −4 1 3 coeff. of x =– − =–1= 4 2 2 coeff. of x 2 Sum of zeroes = 1 æ 1 ö æ 3 ö -3 constant term = Product of zeroes = ç ç ÷÷ çç- ÷÷ = è2ø è 2 ø 4 coeff. of x 2 ∴Relation between zero and coeff. of polynomial is verfied. 1 SECTION D 2 x 2 + 3x + 5 x 2 + 3x − 4 2 x 4 + 3x3 − 12 x 2 + 28 x − 20 5. 2 x 4 + 6 x3 − 8 x2 − − + − 3x − 4 x 2 + 28 x 2 3x3 + 9 x 2 − 12 x 5 x 2 + 16 x − 20 5 x 2 + 15 x − 20 − − + x Hence quotient = 2x2 + 3x + 5; and remainder = x Hence, x should be substract from f (x) to make it exactly divisible by 1 x2 SUMMATIVE ASSESSMENT + 3x – 4. 1 WORKSHEET-14 SECTION A 1. 2x2 + 5x + 1 Since α and β are the zeroes of the polynomial, Therefore (α + β) + αβ = – 5 1 + 2 2 −5 + 1 −4 = = – 2. 2 2 α = – 5 and β = 4 Polynomial = (x – α) (x – β) = (x + 5) (x – 4) = x2 – 4x + 5x – 20 = x2 + x – 20. 1 = 2. Given So, 1 SECTION B 3. Sum of zeroes = a + b = – ⇒ coeff. of x =–a coeff. of x 2 1 2a+b =0 constant =b coeff. of x 2 a = 1 then b = – 2 Product of zeroes = ab = ⇒ P-16 M A T H E M A T I C S -- 1 X T E R M – 1 SECTION C p(x) = 2x3 – 11x2 + 17x – 6 p(2) = 2(2)3 – 11(2)2 + 17(2) – 6 4. (i) Now = 16 – 44 + 34 – 6 = 50 – 50 = 0 1 Hence 2 is the zero of p(x). p(3) = 2 (3)3 – 11(3)2 + 17(3) – 6 (ii) Again = 54 – 99 + 51 – 6 1 = 105 – 105 = 0 Hence, 3 is the zero of p(x). 3 2 1 1 1 1 p = 2 – 11 + 17 – 6 2 2 2 2 (iii) Again = 1 11 17 – + –6 4 4 2 1 =0 Hence, 1 is also the zero of p(x). 2 SECTION D p(x) = x3 – 10x2 + 31x – 30 5. Let Since 2 and 3 are zeroes of p(x). 1 So (x – 2) and (x – 3) are the factors of given polynomial. i.e., (x – 2) (x – 3) = x2 – 5x + 6 is a factor x–5 2 3 x – 5x + 6) x – 10x2 + 31x – 30 x3 – 5x2 + 6x – + – – 5x2 + 25x – 30 – 5x2 + 25x – 30 + – + 0 1 1 Hence other zero is (x – 5) i.e., x = 5. SUMMATIVE ASSESSMENT WORKSHEET-15 SECTION A 1. The maximum number of zeroes that a polynomial of degree 3 can have is 3. 2. If 1 is the zero of the polynomial x2 ⇒ (1)2 + x2 + kx – 5, then + kx – 5 = 0 k(1) – (5) = 0 ⇒ 1+k–5 =0 ⇒ k–4 =0 ⇒ S O L U T I O N S 1 k = 4. 1 P-17 SECTION B 3. Let 3 x2 – 8x + 4 3 p(x) = = 3 x2 – 6x – 2x + 4 3 = 3 x (x – 2 3 ) – 2 (x – 2 3 ) 1 1 = ( 3 x – 2) (x – 2 3 ) SECTION C p(x) = x2 + 7x + 9 4. q(x) = x + 2 r(x) = – 1 g(x) = ? 1 p(x) = g(x)q(x) + r(x) x2 + 7x + 9 = g(x) (x + 2) – 1 x 2 + 7 x + 10 x+2 ( x + 2)( x + 5) = ( x + 2) g(x) = x + 5. 1 g(x) = 1 SECTION D p(x) = 2x2 + 5x + k 5. Sum of zeroes = – coeff. of x coeff. of x 2 −5 =α+β= 2 Product of zeroes = 1 constant coeff. of x 2 = αβ = k 2 According to question, 21 4 21 (α + β)2 – 2αβ + αβ = 4 α2 + β2 + αβ = ⇒ ⇒ ⇒ ∴ Hence, P-18 FG −5 IJ H 2K 1 [Q (α + β)2 = α2 + β2 + 2αβ] 2 k 21 = 2 4 25 21 k − = 4 4 2 k 1 = ⇒ k=2 2 – 1 1 k =2 M A T H E M A T I C S -- X T E R M – 1 SUMMATIVE ASSESSMENT WORKSHEET-16 SECTION A Given α = 1. So, 3 and β = – 3 Polynomial = (x – α) (x – β) = (x – 3 ) (x + 3 ) = x2 – 3. 2. If 3 is the one zero of the polynomial 2x2 + kx – 15, then 2x2 + kx – 15 = 0 2(3)2 + k(3) – 15 = 0 18 + 3k – 15 = 0 3k + 3 = 0 ⇒ k+1 =0 ⇒ k=–1 Now, Polynomial = 2x2 – x – 15 ⇒ = 2x2 – 6x + 5x – 15 ⇒ = 2x(x – 3) + 5(x – 3) ⇒ = (2x + 5) (x – 3) 5 Hence, other zero is – . 2 1 1 SECTION B 3. Q Hence, zeroes are 0 and 2. f (x) = x2 – 2x = x(x – 2) = x = 0 or x = 2 1 1 SECTION C 4. According to question, So, Sum of zeroes = 21 8 Product of zeroes = 5 16 1 Quadratic polynomial = x2 – (Sum of zeroes) x + Product of zeroes = x2 – = FG 21 IJ x + 5 H 8 K 16 1 (16x2 – 42x + 5) 16 = (16x2 – 42x + 5) 1 . 16 1 1 SECTION D 5. Given the polynomial f(x) = ax2 – 5x + c Let the zeroes of f (x) are α and β, then according to question Sum of zeroes, (α + β) = Product of zeroes, (αβ) = 10 Now, S O L U T I O N S α+β =– FG IJ H K −5 coeff. of x 2 = – a coeff. of x 1 P-19 ⇒ 10 = ⇒ a= and αβ = ⇒ ⇒ 10 = c= Hence, a= +5 a 1 2 constant c = a coeff. of x 2 2c 5 1 and c = 5. 2 SUMMATIVE ASSESSMENT 1 1 1 WORKSHEET-17 SECTION A f (x) = ax2 + bx + c 1. (A) Let Sum of zeros = α + β = coeff. of x b =– a coeff. of x 2 But one zero is 0 α+0 =– i.e., b a b · a 2. (A) If a is added in the polynomial, then p(x) = x2 – 5x + 4 + a Given 3 is the zero ∴ p(3) = 0 ⇒ (3)2 – 5(3) + 4 + a = 0 ⇒ –6+4+a =0 ⇒ a =2 1 Hence other zero is – 1 SECTION B 3. Since, – 1 is a zero of polynomial ∴ ⇒ ⇒ ⇒ ⇒ Hence, p(x) = kx2 – 4x + k, then p(–1) = 0 =0 k+4+k =0 2k + 4 = 0 2k = – 4 k =–2 k = – 2. 1 k(–1)2 – 4(–1) + k 1 SECTION C 3 is a zero of the polynomial 2x3 + 9x2 – x – b, then 2 2 2 3 3 3 2 − + 9 − + − b = 0 2 2 2 4. If (2x + 3) is a factor then – − ⇒ Hence, P-20 27 81 6 + + −b =0 4 4 4 60 b = = 15 4 b = 15. M A T H E M A T I C S -- 1 1 1 X T E R M – 1 SECTION D 5 and – 3 Therefore, 5. Since 5 are two zeroes of f (x). 3 5 5 2 5 1 2 x − x + = x − = (3 x − 5) is a factor of f (x) 3 3 3 3 Also, (3x2 – 5) is a factor of f (x) Let us now divide f (x) by (3x2 – 5) We have, x2 + 2x + 1 3x 2 − 5 3x 4 + 6 x 3 − 2 x 2 − 10 x − 5 3x 4 + 0 x3 − 5 x 2 − − + 6 x 2 + 3x 2 − 10 x − 5 6 x3 + 0 x 2 − 10 x 3x 2 − 5 3x 2 − 5 − + 0 By division alorithm, we have 3x4 + 6x3 – 2x2 – 10x – 5 = (3x2 – 5) (x2 + 2x + 1) = ( 3 x + 5) ( 3 x − 5) ( x + 1)2 5 , 3 Hence, the zeros of f (x) are – 5 , – 1 and – 1 3 SUMMATIVE ASSESSMENT WORKSHEET-18 SECTION A 1. Let Let other zero be k, then ∴ 2. f (x) = x2 – 5x – 6 æ -5 ö 6+k =– ç ç ÷÷ = 5 è1ø k =5–6=–1 1 p(x) = ax2 + bx + c Let zeroes of polynomial are α and − α, then b α + (− α) = – a ⇒ 0 =– b ⇒ b=0 a 1 SECTION B p(x) = ax2 + bx + c 1 Let α and be the zeroes of p(x), then α 1 c Product of zeroes, α × = α a So, required condition is c = a. S O L U T I O N S 3. 1 1 P-21 SECTION C p(x) = 5x3 + 8x – 4 = 5x2 + 10x – 2x – 4 = 5x(x + 2) – 2(x + 2) = (x + 2)(5x + 2) 4. Let Hence, zeroes of the quadratic polynomial 5x2 + 8 x – 4 are – 2 and Verification : 1 2 · 5 2 −8 = 5 5 2 −4 Product of zeroes = (– 2) × = 5 5 Sum of zeroes = – 2 + coeff. of x −8 = 5 coeff. of x 2 constant −4 Product of zeroes = 2 = 5 coeff. of x Thus relationship is verified. 1 Again sum of zeroes = 1 SECTION D 3x3 + 4x2 + 5x – 13 = (3x + 10) g(x) + (16x – 43) 5. ⇒ 3 1 2 3 x + 4 x − 11 x + 30 = g(x) 3 x + 10 1 3 x + 10 3 x3 + 4 x2 − 11 x + 30 ( x2 − 2 x + 3 3x3 + 10 x2 (–) (–) – 6 x 2 − 11 x – 6 x 2 – 20 x ( + ) (+ ) 1 9 x + 30 9 x + 30 (–) (–) 0 Hence, g(x) = x2 1 – 2x + 3. SUMMATIVE ASSESSMENT WORKSHEET-19 SECTION A 4x2 – 12x + 9 = 0 1. 4x2 ⇒ ⇒ ⇒ – 6x – 6x + 9 = 0 2x(2x – 3) – 3(2x – 3) = 0 (2x – 3)(2x – 3) = 0 3 3 x = and 2 2 Hence, zeroes of the polynomial are P-22 3 3 , 2 2 M A T H E M A T I C S -- X T E R M – 1 p(x) = 3x2 – kx + 6 coefficient of x Sum of the zeroes = 3 = – coefficient of x2 2. ⇒ 3 =– ⇒ k = 9. (– k) 3 SECTION B 3. Quadratic polynomial = ( x − 15) ( x + 15) = x 2 − ( 15)2 = x2 – 15. SECTION C 2x + 2 3 x 2 − 2 x + 1 6 x 3 + 2 x2 − 4 x + 3 4. 6 x3 – 4 x 2 + 2x – + − 6 x2 − 6 x + 3 6 x2 – 4 x + 2 – + − – 2x + 1 Quotient = 2x + 2; Remainder is – 2x + 1 p(x) = g(x) q(x) + r(x) = (3x2 – 2x + 1) (2x + 2) + (– 2x + 1) = 6x3 – 4x2 + 2x + 6x2 – 4x + 2 – 2x + 1 = 6x3 + 2x2 – 4x + 3. 1 1 Verified. 1 SECTION D x2 – 2 5 x – 15 5. x– 5 ) x3 – 3 x3 – – + 5 x2 – 5x + 15 5 2 5 x2 – 2 5 x2 – 5x – 2 5 x2 + 10x + – – 15x + 15 5 – 15x + 15 5 + – 0 Now, 2 x2 – 2 5 x – 15 = x2 – 3 5 x + 5 x – 15 = x (x – 3 5 ) + 5 (x – 3 5 ) = (x + 5 ) (x – 3 5 ) All the zeroes are 5,– S O L U T I O N S 5,3 5. 2 P-23 SUMMATIVE ASSESSMENT WORKSHEET-20 SECTION A f(x) = x2 – 7x – 8 –7 =7 Let other zero be k, then –1+k =– 1 k =8 1 2. From the graph it is clear that the curve y = f (x) cuts the x-axis at two places between – 2 and 2. ∴ Required number of zeroes = 2. 1 1. FG IJ H K SECTION B 3. Let, f (x) = 2x2 – 5x – 3 Let the zeroes of polynomial are α and β, then 5 3 , product of zeroes αβ = – 2 2 According to question, zeroes of x2 + px + q are 2α and 2β Sum of zeroes α + β = Sum of zeroes = – coeff. of x −p 2 = 1 coeff. of x = 2α + 2β = 2(α + β) = 2 × Product of zeroes = constant q 2 = 1 coeff. of x 5 =5 ⇒ p=–5 2 1 FG 3 IJ = – 6 H 2K = 2α × 2β = 4αβ = 4 − ∴ 1 p = – 5 and q = – 6. SECTION C p(x) = 3x2 – 4x – 7 and α and β are its zeroes. 4. æ 4ö 4 - ÷= Sum of zeroes α + β = -ç è 3ø 3 1 æ 7ö - ÷ Product of zeroes αβ = ç è 3ø For new polynomial Sum 1 1 a+b 4/3 4 + == = a b ab -7 / 3 7 1 1 1 1 1 3 ´ == = a b ab -7 / 3 7 The required polynomial = x2 – (sum of zeroes)x + product of zeroes product æ 3ö 2 æ 4ö - ÷x +ç- ÷ = x -ç è 7ø è 7ø = 1 (7 x2 + 4 x - 3) 7 2 = (7 x + 4 x - 3) P-24 1 7 M A T H E M A T I C S -- ½ X T E R M – 1 SECTION D x4 – 4x + (8 – k) 5. x2 – 2x + k) x4 – 6x3 + x4 – 2x3 + – + – 16x2 – kx2 25x + 10 – 4x3 + (16 – k)x2 – – 4x3 + 8x2 – + – + 25x + 10 4kx 1 (8 – k)x2 – (25 – 4k)x + 10 (8 – k)x2 – (16 – 2k)x + (8k – k2) – + – (2k – 9)x + (10 – 8k + k2) 2 Given, remainder = x + a ⇒ 2k – 9 = 1 ⇒ k = 10 =5 2 a = 10 – 8k + k2 = 10 – 40 + 25 = – 5. and SUMMATIVE ASSESSMENT 1 WORKSHEET-21 SECTION A 1. From the graph it is clear that curve cut the x-axis at three places. So number of zeroes is 3. 2. Let f (x) = ax2 + bx + c Now product of zeroes = 1 constant c 2 = a coeff. of x Sum of zeroes = – coeff. of x b =– a coeff. of x 2 1 SECTION B 3. Since α and β are the zeroes of the polynomial f(x) = x2 – px + q ∴ α + β = p, αβ = q Now 1 1 α+β p + = = α β αβ q 1 1 SECTION C 4. Let α and β are the zeroes of the polynomial, then as per question β = 7α 8 ∴ α + 7α = 8α = – − 3 1 ⇒ α = 3 FG IJ H K and ⇒ S O L U T I O N S ½ ½ 2k + 1 3 2 k +1 7α2 = 3 α × 7α = P-25 ⇒ F 1I 7 G J H 3K ⇒ 7× 2 = 2k + 1 3 1 1 2k + 1 = 9 3 7 – 1 = 2k 3 2 = k. 3 ⇒ ⇒ 1 SECTION D 2 ) = x2 – 2 2 ) (x – 5. Polynomial g(x) = (x + x2 – 2 ) x4 – 5x3 + 2x2 + 10x – 8 ( x2 – 5x + 4 – x4 – 2x2 + – 5x3 + 4x2 + 10x – 5x3 + + 10x – 4x2 – 8 4x2 – 8 (–) (+) 2 0 x2 – 5x + 4 = (x – 4) (x – 1) 1 Other zeroes are 4 and 1. 1 SUMMATIVE ASSESSMENT WORKSHEET-22 SECTION A 1. Given, p (x) = x2 – 5x + 6 Sum of zeroes = α + β = – Product of zeros = αβ = FG −5 IJ = 5 H1K 6 =6 1 Now α+ β – 3αβ = 5 – 3(6) 1 = 5 – 18 = – 13. 2. Required polynomial = ( x − 2) ( x − 2 2) = x2 − 2 2 x − 2 x + ( 2) (2 2) 1 = x2 − 3 2 x + 4. P-26 M A T H E M A T I C S -- X T E R M – 1 SECTION B f (x) = 2x2 – 7x + 3 3. Sum of roots = p + q = – Product of roots = pq = coeff. of x =– coeff. of x 2 3 constant = 2 2 coeff. of x FG −7 IJ = 7 H 2K 2 ½ ½ We know that (p + q)2 = p2 + q2 + 2pq p2 + q2 = (p + q)2 – 2pq ⇒ FG 7 IJ H 2K = 2 −3= 49 3 37 − = . 4 1 4 ½ ½ SECTION C 4. 2 x 2 +2 x -1 4 x 2 + 3 x - 2 8 x 4 + 14 x3 - 2 x 2 + ax + b – 8x4 + 6x3 - 4x 2 – + 8 x3 + 2 x 2 + ax – 8 x3 + 6 x2 - 4 x – + - 4 x 2 + ( a + 4) x + b -4 x 2 - 3 x + 2 + + – (a + 7) x + b - 2 For exact division, remainder is zero, then (a + 7) x + b – 2 = 0 a + 7 = 0, b – 2 = 0 a = – 7, b = 2. 2 1 SECTION D 5. 2 x2 + 2 x − 1 4 x + 3 x − 2 8 x + 14 x − 2 x2 + 8 x − 12 2 4 3 8x4 + 6x3 – 4x2 – – + 8x3 + 2x2 + 8x 8x3 + 6x2 – 4x – – + – 4x2 + 12x – 12 – 4x2 – 3x + 2 + + – 1 1 15x – 14 1 Subtract 15x – 14 or add – 15x + 14 for exact division. 1 S O L U T I O N S P-27 SUMMATIVE ASSESSMENT WORKSHEET-23 SECTION A 1. Let α = 3, β = − 3 be the given zeros and γ be the third zero. Then, 4 α + β + γ = – − 1 ⇒ Hence third zero is 4. 3− 3+γ =4 x = 4. 1 2. If α, β and γ are the zeros of cubic polynomials f(x) f (x) = k{x3 – (α + β + γ) x2 + (αβ + βγ + γα) x – αβγ} Then Here, α + β + γ = 2, αβ + βγ + γα = – 7 and αβγ = – 14 ∴ f(x) = k(x3 – 2x2 – 7x + 14) 1 where k is any non-zero real number. SECTION B p(x) = 3x2 + 11x – 4 3. Let = 3x2 + 12x – x – 4 ⇒ = 3x(x + 4) – 1(x + 4) ⇒ = (3x – 1) (x + 4) So, zeroes are : Now, m = ½ 1 and n = – 4. 3 FG IJ H K ½ 1 m n −4 3 + + n m = −4 1 3 1 145 = − 12 – 12 = – . 12 FG IJ H K ½ ½ SECTION C 4. p(x) = 6y2 – 7y + 2 7 7 α + β = – − = 6 6 αβ = 2 6 1 1 α+β 7/6 7 + = = = α β αβ 2/6 2 1 1 1 1 × = =3 α β αβ 1 7 y+3 2 = 2[2y2 – 7y + 6] 2 The required polynomial = y − P-28 M A T H E M A T I C S -- 1 X T E R M – 1 5. Since α and β are the zeroes of polynomial 3x2 + 2x + 1. 2 Hence, α+β = − 3 1 and αβ = 3 Now for the new polynomial, 1−α 1−β + Sum of the zeroes = 1+α 1+β (1 − α + β − αβ) + (1 + α − β − αβ) = (1 + α)(1 + β) 2 2− 2 − 2αβ 3 = = 1 + α + β + αβ 1 − 2 + 1 3 3 4 Sum of zeroes = 3 = 2 2 3 (1 − α)(1 − β) 1−α 1–β Product of zeroes = = (1 + α)(1 + β) 1+α 1+β FG H = IJ FG KH 1 1 1 IJ K 1 − α − β + αβ 1 − (α + β) + αβ = 1 + α + β + αβ 1 + (α + β) + αβ 2 1 6 + 3 3 = 3 =3 Product of zeroes = 2 1 2 1− + 3 3 3 1+ 1 Required polynomial = x2 – (Sum of zeroes)x + Product of zeroes Hence, = x2 – 2x + 3. 1 FORMATIVE ASSESSMENT WORKSHEET-24 Objective Type Questions 1. (?) 2. (D) 3. (A) 4. (C) 5. (D) 6. (B) 1×6 Fill in the blanks 1. S. No. No. of zeros Zeroes 1. 1 −3 2. 1 2 3. 3 − 4, − 4, 2 4. 3 − 4, − 2, 2 5. 0 — 1×5 Quiz 1. S O L U T I O N S P(x) = 3x3 – 2x2 + 6x – 5 P(2) = 3(2)3 – 2(2)2 + 6(2) – 5 = 3 × 8 – 2 × 4 + 12 – 5 = 24 – 8 + 12 – 5 = 36 – 13 P(2) = 23 1 P-29 α+β = 2. −b =–2 a c 3 = =3 a 1 Hence the quadratic polynomial = x2 – (α + β) x + αβ = x2 – 2x + 3 αβ = 3. 1 1 1 + n m −b − b a − b − 11 11 m+n = a = × = = = · c mn a c c −4 4 a 1 4. For the polynomial t2 – 4t + 3 p+q =– pq = b (− 4) =– =4 a 1 ....(i) c 3 = =3 a 1 ( p + q)2 − 4 pq (p – q) = = (4)2 − 4 × 3 = 16 − 12 = Hence By (i) + (ii) Hence and p–q 2p p q 4 = ±2 =+2 = 6 or 2p = 2 = 3 or 1 = 1 or 3 1 1 14 + − 2 pq + =0 p q 3 1 14 + 1 − 2g3g1 + =0 3 3 1 14 +1 −6 + =0 3 3 = 1 + 3 − 18 + 14 18 − 18 = =0 3 3 1 ●● P-30 M A T H E M A T I C S -- X T E R M – 1 CHAPTER 3 Pair of Linear Equations in Two Variables SUMMATIVE ASSESSMENT WORKSHEET-25 SECTION A 1. For a unique solution a1 b1 ≠ a2 b2 −2 3 ≠ k 2 ⇒ –4 ≠k i.e., all real numbrs except – 4. 2. x = 6, y = 1. i.e., 1 1 SECTION B 3. 3x – 2y = 4 2x + y = 5 Putting x = 2 and y = 1 in equation (1), we have L.H.S. = 3 × 2 – 2 × 1 = 4 = R.H.S. Putting x = 2 and y = 1 in equation (2), we have L.H.S. = 2 × 2 + 1 × 1 = 5 = R.H.S. Thus, x = 2 and y = 1 satisfy both the equations of the given system. Hence x = 2, y = 1 is solution of the given system. ....(1) ....(2) ½ ½ 1 SECTION C 4. Let the man can finish the work in x days and the boy can finish the same work in y days. Work done by one man in one day = 1 x Now, work done by one boy in one day = 1 y According to question, 2 7 1 + = 4 x y 1 4 4 + = 3 x y S O L U T I O N S ...(1) ...(2) P-31 Let 1 1 = a and = b, then y x 1 4 1 4a + 7b = 3 Multiply eqn. (3) by 2 and substract from it eqn. (4) 1 4a + 14b = 2 1 4a + 4b = 3 – – – 1 10b = 6 1 1 = = y 60 ⇒ y = 60 days. 1 Put b = in equation (3), we get 60 1 a= 15 ...(3) 2a + 7b = ...(4) 1 1 1 1 = 15 x x = 15 days. So ⇒ 1 SECTION D 5. x + 3y = 6 ...(1) x 3 6− x y = 3 6 y 1 0 ⇒ 0 2 ½ 2x – 3y = 12 ⇒ y = ...(2) 2 x − 12 3 x 0 6 3 y −4 0 −2 x+ Putting the above points and drawing a line joing them, we get the graphs of the equations x + 3y = 6 and 2x – 3y = 12. 1 Clearly, the two lines intersect at point B (6, 0). Hence, x = 6 and y = 0 is the solution of the system. 1 Again ∆ OAB is the region bounded by the line 2x – 3y = 12 and both the co-ordinate axes. 1 P-32 ½ y 3y =6 2 1 x' (0, 2) (3, 1) (6, 0) –3 –2 –1 0 1 2 3 –1 –2 –3 (0, –4) –4 2 A 3 x– y= 4 5 6 B x (3, –2) 12 y' M A T H E M A T I C S -- X T E R M – 1 SUMMATIVE ASSESSMENT WORKSHEET-26 SECTION A 1. The lines represented by the equations a1x + b1y + c1 = 0 and a2x + b2y + c2 = 0 are parallel, if c b a1 = 1 ≠ 1 · c2 b2 a2 1 2. The lines represented by the equations a1x + b1x + c1 = 0 and a2x + b2y + c2 = 0 are coincident, if a1 b c = 1 = 1 · a2 b2 c2 1 SECTION B 3. 2x – y = 2 y = 2x – 2 x + 3y = 15 Substituting the value of y form (i) in (ii), we get x + 6x – 6 = 15 7x = 21 x =3 From (1), y =2×3–2=4 ∴ x = 3 and y = 4. ...(i) ...(ii) 1 1 SECTION C 4. (2m – 1)x + 3y – 5 = 0 On comparing with the eqn. a1x + b1y + c1 = 0 a1 = 2m – 1, b1 = 3, c1 = – 5 3x + (n – 1)y – 2 = 0 On comparing with the eqn. a2x + b2y + c2 = 0 a2 = 3, b2 = (n – 1), c2 = – 2 For a pair of equations to have infinite number of solutions. ...(1) ½ ...(2) ½ a1 c b = 1 = 1 a2 c2 b2 ⇒ 2m − 1 3 5 = = 3 n−1 2 2(2m –1) = 15 and 5 (n–1) = 6 17 11 m= ,n= · 4 5 1 1 SECTION D 5. Let the speed of the boat in still water be ‘x’ km/hr and speed of the stream be ‘y’ km/hr. Speed of the boat during upstream be (x – y) km/hr and during downstream be (x + y) km/hr. ∴ S O L U T I O N S 30 28 21 21 =7; =5 + + x− y x+ y x− y x+ y 1 P-33 1 1 = a and = b, we get x− y x+ y 30a + 28b = 7 21a + 21b = 5 Multiplying eqn. (2) by 21 and eqn. (2) by 28 and then subtracting, we get 630a + 558b = 147 588a + 558b = 140 – – – Let ...(1) ...(2) ...(3) ...(4) 1 On subtracting, 42a = 7 7 1 ⇒ a= = 42 6 Putting this value of a in eqn, (1), we get 28b = 7 – 30a = 7 – 30 × Now, a= 1 1 =2⇒b= 6 14 1 1 = ⇒x–y=6 x− y 6 ...(5) 1 1 1 = ⇒ x + y = 14 x+ y 14 Solving (5) and (6), we get x = 10, y = 4 Hence, speed of the boat in still water = 10 km/hr and speed of the stream = 4 km/hr. b= SUMMATIVE ASSESSMENT ...(6) WORKSHEET-27 SECTION A 1. x–y= and x+y= Adding both the equations, 2x = Put the value of x in the eqn. (2), we get 3+y= Hence, a= 2. ad ≠ bc ⇒ 2 4 6 ⇒ x=3 ...(1) ...(2) 4 ⇒ y=1 3, b = 1. 1 a b ≠ . Hence, the pair of linear equations has unique solution. c d 1 SECTION B 3. Yes, for justification we have For the equation 2x + 3y = 9 a1 = 2, b1 = 3 and c1 = – 9 and for the equation, 4x + 6y = 18 a2 = 4, b2 = 6 and c2 = – 18 ½ ½ c –9 1 2 1 b1 3 1 a1 = = , = = and 1 = = c2 –18 2 4 2 b2 6 2 a2 b1 c1 a1 = From above it is clear that = b2 c2 a2 Hence system is consistent and dependent. Here ½ ½ SECTION C 4. Given equations are 2x + 3y = 7 and 2αx + (α + β) y = 28. We know that the condition for a pair of linear equations to be consistent and having infinite b1 c1 a1 number of solutions is = b2 = c2 a2 P-34 M A T H E M A T I C S -- X T E R M – 1 1 2 = 3 = 7 a + b 28 2α I II III ⇒ 2 2α α 3 α +β α +β β β β From I and III, ⇒ From II and III, ⇒ Hence α = 4, and β = 8. = = = = = = = 7 28 4 7 28 12 12 – α 12 – 4 8 ½ ½ 1 SECTION D 5. 2x + 3y = 12 ⇒ y = 12 − 2 x 3 x 0 6 3 y 4 0 2 x–y=1 ⇒y=x–1 x 0 1 3 y −1 0 2 Putting the above points and drawing a line joining them, we get the graph of the equations 2x + 3y = 12 and x – y = 1. y 5 B4 3 (0, 4) P M 2 1 (6, 0) (1, 0) x' 1 2 3 A (0, – 1) –5 –4 –3 –2 –1 –1 –2 x–y=1 (3, 2) 4 5 6 7 8 x 2x + 3y = 12 1 –3 –4 y' Clearly, the two lines interesect at point P (3, 2). Hence, x = 3 and y = 2 is the solution of the system. Area of shaded region = Area of ∆ PAB 1 1 = × base × height = × AB × PM 2 2 1 = ×5×3 2 = 7.5 square unit. S O L U T I O N S 1 1 P-35 SUMMATIVE ASSESSMENT WORKSHEET-28 SECTION A 1. The equation of one line 4x + 3y = 14. We know that if two lines a1x + b1y + c = 0 and a2x + b2y + c2 = 0 are parallel, then c1 a1 b = 1 ≠ c2 a2 b2 1 Hence, second parallel line is – 12x = 9y. 2. Given, Here, 3x + 4y = 7 and 3x + 4y = 16 c b a1 = 1 ≠ 1 c2 b2 a2 1 Hence, pair of linear equations has no solution. SECTION B 3. 99x + 101y = 499 101x + 99y = 501 Adding equation (1) and (2), we get 200x + 200y = 1000 ⇒ x+y=5 Subtracting equation (2) from equation (1) – 2x + 2y = – 2 ⇒ x–y=1 Adding equations (3) and (4) 2x = 6 ⇒ x = 3 Put the value of x in equation (3), we get y = 2. ...(1) ...(2) ...(3) ½ ...(4) ½ ½ ½ SECTION C 4. (i) Let the fixed charge of taxi be Rs. x per km and the running charge be ` y per km. According to the question, x + 10y = 75 x + 15y = 110 Subtracting equation (2) from equation (1), we get – 5y = – 35 ⇒ y =7 Putting y = 7 in equation (1), we get x = 5 ...(1) ...(2) 1 1 ∴ Total charges for travelling a distance of 25 km = x + 25y = ` (5 + 25 × 7) = ` (5 + 175) 1 = ` 180 (ii) Pair of linear equations in two variables. ½ (iii) We should always be justified in our dealings. ½ P-36 M A T H E M A T I C S -- X T E R M – 1 SECTION D 5. Let the sum of the ages of the 2 children be x and the age of the father be y years. ∴ y = 2x i.e., 2x – y = 0 and 20 + y = x + 40 x – y = – 20 Subtracting (2) from (1), we get x = 20 From (1), y = 2x = 2 × 20 = 40 y = 40 Hence, the age of the father = 40 years. SUMMATIVE ASSESSMENT ...(1) 1 ...(2) 1 1 1 WORKSHEET-29 SECTION A 1. ⇒ – 3x + 4y = 7 ...(1) 9 21 x – 6y + =0 2 2 –3x + 4y = 7 ...(2) a1 b1 c1 = = a2 b2 c2 From eqns. (1) and (2), 2. Hence, pair of linear equations has infinite number of solutions. Put x = 2 and y = 3 in 2x – 3y + a = 0 and 2x + 3y – b + 2 = 0, we get 4–9+a =0⇒a=5 4 + 9 + 2 – b = 0 ⇒ b = 15 From above it is clear that 3a = b. 1 1 SECTION B 3. Given equations are : 4x + py + 8 = 0 2x + 2y + 2 = 0 ...(1) ...(2) The condition of unique solution, Hence, ∴ a1 b1 ≠ a2 b2 4 p 2 p ≠ or ≠ 2 2 1 2 p ≠ 4. 1 1 SECTION C 4. (i) Let the monthly rent of the house be ` x and the mess charges per head per month be ` y. According to the given conditions, x + 2y = 3900 ...(i) x + 5y = 7500 ...(ii) ½ Subtracting equation (ii) from equation (i), we get – 3y = – 3600 3600 ⇒ y = = 1200 1 3 Putting this value of y in eqn. (i), we get x + 2400 = 3900 ⇒ x = 3900 – 2400 = 1500 Hence, monthly rent = ` 1500 1 S O L U T I O N S P-37 (ii) Mess charge per head per month = ` 1200 (iii) Pair of linear equations in two variables. (iv) Monitering is always good to control our of extreme habits. ½ ½ ½ SECTION D 5. 2(3x – y) = 5xy ...(1) 2(x + 3y) = 5xy ...(2) 6 2 − =5 y x ...(3) 2 6 + =5 y x ...(4) 1 Divide eqns. (1) and (2) by xy, Putting 1 1 = b, then equations (3) and (4) become = a and y x 6a – 2b = 5 ...(5) 2a + 6b = 5 ....(6) 1 Multiplying eqn. (5) by 3 and then adding with eqn. (6), we get 20a = 20 ⇒ a = 1 Putting this value of a in eqn. (5), we get b= 1 2 Now 1 = a = 1 ⇒ y =1 y and 1 1 =b= ⇒ x = 2. x 2 SUMMATIVE ASSESSMENT 1 1 WORKSHEET-30 SECTION A 1. From the options it is clear that x = 2, y = 3 is a solution of the linear equation 2x + 3y –13 = 0. 2. at y-axis x = 0, then 0–y =8 ⇒ y=–8 Hence, point of interrection is are (0, –8). 1 SECTION B 3. Pair of equations kx – 4y = 3 6x – 12y = 9 Condition for infinite solutions : a1 b1 c1 = = a2 b2 c2 ⇒ P-38 1 k −4 3 = = 6 −12 9 k = 2. M A T H E M A T I C S -- 1 X T E R M – 1 SECTION C 4. ⇒ x – 5y = 6 x = 6 + 5y y 0 −1 −2 x 6 1 −4 1 2x – 10y = 12 ⇒ x = 5y + 6 y 0 −1 −2 x 6 1 −4 1 y 1 x' x – 5y = 6 (6, 0) –5 –4 –3 –2 –1 0 –1 12 0y = 1 –2 – x 2 2) –3 (–4, – 1 2 3 4 5 6 x 7 (1, –1) y' Since the lines are co-incident, so the system of linear equations is cosistent with infinite solutions. 1 SECTION D 2x + 3y = 12 ⇒ 5. 12 − 2 x 3 x–y=1 ⇒ x–1 x 0 6 3 x 0 1 3 y 4 0 2 y −1 0 2 1 Putting the above points and drawing a line joining them, we get the graphs of equations 2x + 3y = 12 and x – y – 1 = 0. y 2x (0, 4) 4 3 x–y–1=0 +3 y= C 2 12 (3, 2) 1 x' (6, 0) B A –3 –2 –1 0 (0, –1) –1 1 2 (1, 0) –2 3 4 5 6 x 1 –3 y' Clearly, the two lines interesct at point (3, 2), Hence, x = 3 and y = 2 is the required solution. 1 ∆ ABC is the region between the two lines represented by the above equations and the x-axis. 1 S O L U T I O N S P-39 SUMMATIVE ASSESSMENT WORKSHEET-31 SECTION A 1. For coincident lines a1 b1 c1 = = a2 b2 c2 k 7 2 = = 8 14 4 ⇒ k = 4. 2. x+y=0 x+y+7=0 a1 b1 c ¹ 1 Q a2 = b2 c2 Hence, pair of equations has no solution. ⇒ 1 1 SECTION B 3. The condition for no solution, When i.e., Since k 3 = , we get k2 = 36 12 k k=±6 k 3 1 a1 b1 c1 = ≠ = ≠ ⇒ 12 k 2 a2 b2 c2 ½ k ≠ 6, so k = – 6. ½ 1 SECTION C 4. 7x – 4y On comparing with the equation a1x + b1y a1 Again, 5x – 6y On comparing with the equation a2x + b2y a2 = 49 ...(1) = 0 = 7, b1 = – 4, c1 = 49 = 57 ...(2) = c2 = 5, b2 = – 6, c2 = 57 a1 b1 7 4 = and = a2 b2 5 6 a1 b1 ¹ a2 b2 Since, 1 So, system has unique solution. Multiply eqn. (1) by 5 and multiply eqn. (2) by 7 and subtract, 35x – 20y = 245 1 35x – 42y = 399 – + – 22y ⇒ y Put the value of y in eqn. (1) 5x – 6(–7) = 57 ⇒ 5x ⇒ x Hence, x P-40 = –154 = –7 = 57 – 42 = 15 =3 = 3 and y = –7. M A T H E M A T I C S -- 1 X T E R M – 1 SECTION D 5 1 + =2 x −1 y− 2 6 3 − =1 x −1 y− 2 5. ...(1) ...(2) 1 1 1 = p, =q x −1 y−2 Then the equations (1) and (2) will be 5p + q = 2 6p – 3q = 1 Multiplying eqn. (3) by 3 and then adding in eqn. (4), we get Let ...(3) ...(4) 1 21p = 7 ⇒ p= 7 1 = 21 3 1 Putting this value of p in eqn. (3), we get q = 2 – 5p = 2 – 5 × 1 1 = 3 3 ∴ 1 1 = ⇒ x –1 = 3 x −1 3 x =4 and q= ∴ Solution is y=5 x = 4 , y = 5. Now p= 1 1 y- 2 = 3 ⇒ y – 2 = 3 SUMMATIVE ASSESSMENT 1 WORKSHEET-32 SECTION A 1. Since, line intersect y-axis, then x = 0 ⇒ 3(0) – 2y = 6 ⇒ y = –3 1 Hence, required point is (0,– 3). 2. 4x – 5y = 5 kx + 3y = 3 For the condition of inconsistent a1 b1 c ¹ 1 a2 = b2 c2 i.e., ⇒ ⇒ S O L U T I O N S 4 −5 5 ≠ = k 3 3 4 −5 = k 3 −12 k= 5 1 P-41 SECTION B 3. From Fig., x+y= x–y= Adding (i) and (ii), we get 2x = or x = Put the value of x in equation (i), we get 19 + y = or y = Hence, x = 22 16 38 19 ...(i) ...(ii) ½ ½ 22 22 – 19 = 3 19 and y = 3. ½ ½ SECTION C 4. Let 1 = a, the given equations become y 4x + 6a = 15 ...(1) ...(2) ½ 6x – 8a = 14 Multiply eqn (1) by 4 and eqn. (2) by 3 and adding 16x + 24a = 60 18x – 24a = 42 On adding, 34x = 102 ⇒ x = Put the value of x in eqn. (1) 102 =3 34 ½ 4(3) + 6a = 15 6a = 15 – 12 = 3 3 1 = 6 2 1 1 = a= ⇒y=2 y 2 x = 3 and y = 2 a= Q Hence Again y = px – 2 ⇒ 2 = p(3) –2 ⇒ 3p = 4 ⇒ p = 1 4 · 3 1 SECTION D 5. Let the speed of the boat be x km/hr and speed of the stream be y km/hr. ∴ Upstream speed = x – y km/hr and Downstream speed = x + y km/hr According to the question, 32 36 + =7 x− y x+ y and 40 48 + =9 x− y x+ y 1 1 = A, = B, we get x− y x+ y 32A + 36B = 7 and 40A + 48B = 9 1 1 Solving these equations, we get A= ,B= 8 2 Let P-42 M A T H E M A T I C S -- 1 X T E R M – 1 1 1 = x− y 8 ⇒ x–y=8 1 1 = and B= 12 x + y ⇒ x + y = 12 Adding equations (1) and (2), we get 2x = 20 ⇒ x = 10 Putting this value of x in eqn.(1), we get y = x – 8 = 10 – 8 = 2 Hence, the speed of the boat = 10 km/hr and speed of the stream = 2 km/hr. Hence A= SUMMATIVE ASSESSMENT ...(1) ½ ...(2) ½ 1 1 WORKSHEET-33 SECTION A 1. 2x + y = 7 6x – py = 21 For the condition of infinite number of solutions a1 b c = 1 = 1 a2 b2 c2 1 7 2 = = − p 21 6 ⇒ 1 1 = − p 3 ⇒ p = – 3. 1 2. If a pair of linear equations is consistent, then the lines represented by these equations will be intersecting (or) coincident. 1 ⇒ SECTION B 3. Condition for unique solution, a1 a2 k 12 k2 k b1 b2 3 ≠ k ≠ 36 ≠ ± 6. ≠ 1 1 SECTION C 4. (i) Suppose the person invested ` x at the rate of 12% simple interst and ` y at the rate of 10% simple interest, then yearly interest = 12 x 10 y + 100 100 12 x 10 y + = 130 100 100 ⇒ 12x + 10y = 13000 ⇒ 6x + 5y = 6500 If the invested amounts are interchanged, then yearly interest increases by ` 4. ∴ 10x + 12y = 13400 ⇒ 5x + 6y = 6700 S O L U T I O N S ∴ ..(1) ½ ...(2) ½ P-43 Subtracting eqn. (2) from eqn. (1), we get x – y = – 200 ...(3) Adding equations (1) and (2), we get 11x + 11y = 13200 ⇒ x + y = 1200 ...(4) Adding equations (3) and (4), we get 2x = 1000 ⇒ x = 500 1 Putting x = 500 in equation (3), we get y = 700 Thus, the person invested ` 500 at the rate of 12% per year and ` 700 at the rate of 10% per year. (ii) Pair of linear equations in two variables. ½ (iii) Honesty is the best policy. ½ SECTION D 5. Let length = x and breadth = y Then according to first condition, (x – 5) (y + 3) = xy – 9 ⇒ ...(1) 1 3x – 5y = 6 According to second condition, (x +3) (y +2) = xy + 67 ⇒ ...(2) 1 2x + 3y = 61 Multiplying eqn. (1) by 3 and eqn. (2) by 5 and then adding, we get 9x – 15y = 18 Aadding, 10x + 15y = 305 323 = 17 19 1 3(17) – 5y = 6 ⇒ 5y = 51 – 6 ⇒ y = 9 1 19x = 323 ⇒ x= Putting this value of x in eqn. (1), we get Hence, perimeter = 2(x + y) = 2(17 + 9) = 52 units. SUMMATIVE ASSESSMENT WORKSHEET-34 SECTION A 1. (B) First line is For parallel lines, So, second line is 10x – 8y –7 = 0 c1 a1 b = 1 ≠ a2 b2 c2 15x –12y –7 = 0. 2. The area of the triangle formed by line 1 x y + = 1 with the coordinate axis = ab. a b 1 SECTION B 3. Suppose my age is x years and my son’s age is y years. Then x = 3y Five years later, my age will be (x + 5) years and my son’s age will be (y + 5) years. 5 ∴ x + 5 = (y + 5) 2 ⇒ 2x – 5y – 15 = 0 P-44 M A T H E M A T I C S -- X ...(1) ½ ...(2) T E R M – 1 Put x = 3y in equation (2) 6y – 5y – 15 = 0 ⇒ y = 15 Putting y = 15 in equation (1) x = 45 Hence, my present age is 45 years and my son’s present age is 15 years. 1 SECTION C 4. For (2p – 1)x + (p – 1)y – (2p + 1) a1 and for 3x + y – 1 a2 For the condition of no solution a1 a2 2p − 1 3 2p − 1 By 3 ⇒ 3p – 3 ⇒ 3p – 2p p = = = = 0 2p – 1, b1 = p –1 and c1 = – (2p + 1) 0 3, b2 = 1 and c2 = – 1 b1 c1 = b ≠ c 2 2 p −1 2p + 1 ≠ = 1 1 p−1 = 1 = 2p – 1 =3–1 = 2. ½ ½ 1 1 SECTION D 5. Let two digit number is 10x + y. According to question, 8(x + y) – 5 = 10x + y ⇒ 2x – 7y + 5 = 0 and 16(x – y) + 3 = 10x + y 6x – 17y + 3 = 0 Solving eqns. (1) and (2) by cross-multiplication method, we get x y 1 = = (2)(–7) – (6)(–7) (–7)(3) – (–17)(5) (5)(6) – (2)(3) ⇒ ...(1) ...(2) 1 1 x y 1 = = −21 + 85 30 − 6 −34 + 42 x y 1 = = 64 24 8 ⇒ x y = =1 8 3 Hence, x = 8, y = 3 So required number = 10 × 8 + 3 = 83. ⇒ SUMMATIVE ASSESSMENT 1 1 WORKSHEET-35 SECTION A 1. 3x + ky = 5 2x + y = 16 For unique solution, S O L U T I O N S a1 b ≠ 1 a2 b2 1 P-45 3 k ≠ 2 1 ⇒ ⇒ k≠ 3 2 SECTION B 2. For equation, 2x + 3y = 4 a1 = 2, b1 = 3, c1 = – 4 For equation, ½ (k + 2) x + 6y = 3k + 2 a2 = k + 2, b2 = 6, c2 = – (3k + 2) For infinitely many solutions ⇒ ½ a1 b1 c1 = = a2 b2 c2 2 3 4 = = k+2 6 3k + 2 k = 2. 1 SECTION C 3. 141x + 93y = 189 ...(1) 93x + 141y = 45 ...(2) Adding equations (1) and (2), we get 234x + 234y = 234 x+y=1 ...(3) Subtracting equation (2) from equation (1), we get 48x – 48y = 144 ...(4) 1 x–y=3 Adding equations (3) and (4), we get 2x = 4 1 x =2 Put the value of x in equation (3), we get 2+y=1 y =1–2=–1 Hence, 1 x = 2 and y = – 1 SECTION D 4. Let the cost of one pencil be ` x and the cost one chocolate be ` y. According to question, 2x + 3y = 11 x + 2y = 7 Now, and P-46 2x + 3y = 11 ⇒ x = ...(1) ...(2) 11 − 3 y 2 y 1 3 5 x 4 1 −2 1 x + 2y = 7 ⇒ x = 7 – 2y M A T H E M A T I C S -- X T E R M – 1 y 0 1 3 x 7 5 1 1 y 8 7 (–2, 5) 6 5 x + 2y = 7 4 3 (1, 3) 2 1 x' (5, 1) (4, 1) –6 –5 –4 –3 –2 –1 0 –1 –2 –3 1 2 3 (7, 0) 4 5 6 7 8 2x + 3y = 11 x 1 –4 –5 –6 –7 y' Putting the above points and drawing the lines joining them, we get the graph of the above equations. Clearly, two lines interesect at point (1, 3). ∴ Solution of eqns. (1) and (2) is x = 1 and y = 3 ∴ Cost of one pencil = ` 1 and cost of one chocolate = ` 3. SUMMATIVE ASSESSMENT 1 WORKSHEET-36 SECTION A 1. 4x –3y = 9 2x + ky = 11 c1 a1 b = 1 ≠ a2 b2 c2 For unique solution, 4 −3 9 = ≠ 2 k 11 ⇒ ⇒ 2= –3 k ⇒ k= −3 · 2 1 SECTION B 2. ⇒ ⇒ x +1 y−1 + = 9 2 3 3(x + 1) + 2(y –1) = 54 3x + 2y = 53 ⇒ S O L U T I O N S ...(1) x −1 y +1 + =8 3 2 P-47 ⇒ 2(x – 1) + 3 (y + 1) ⇒ 2x + 3y Multiply eqn. (1) by (3), 9x + 6y Multiply eqn. (2) by 2, 4x + 6y – – On subtracting Put the value of x in eqn. (2), = = = = 48 47 53 × 3 47 × 2 – ... (2) ½ 5x = 65 65 x = = 13 5 ½ 2(13) + 3y = 47 Hence 3y = 47 –26 = 21 21 =7 y = 3 x = 13, y = 7. 1 SECTION C 3. a+b 2 or 2ax + 2by = a + b and 3x + 5y = 4 Multiplying (i) by 5 and (ii) by 2b, we get 10ax + 10by = 5a + 5b 6bx + 10by = 8b – – – ax + by = On subtracting, ...(i) ...(ii) 1 1 x(10a – 6b ) = 5a – 3b 5 a − 3b 1 = x = 2(5a − 3b) 2 1 1 in (1), we get y = 2 2 1 1 x = and y = · 2 2 Putting x = Hence 1 SECTION D 4. Let the speed of bus be x km/hr and the speed of the train be y km/hr. 240 120 + According to question, =8 x y 120 240 + and =7 x y 1 1 Let = a, = b, then y x 240a + 120b = 8 120a + 240b = 7 Apply [(1) × 2 – (2)], we get 480a + 240b = 16 120a + 240b = 7 – – – On subtracting, ⇒ P-48 1 ...(1) ...(2) ...(2) 360a = 9 a= 9 1 = 360 40 M A T H E M A T I C S -- 1 X T E R M – 1 Putting this value of a in eqn.(1), we get 1 60 1 1 = b= ⇒ y = 60 60 y 1 b= 1 1 = ⇒ x = 40 40 x Hence, speed of bus = 60 km/hr and speed of train = 40 km/hr. a= 1 SUMMATIVE ASSESSMENT WORKSHEET-37 SECTION A 1. The area of the triangle formed by the lines x = 3, y = 4 and x = y is = 1 2 sq unit. 1 SECTION B 2. 29x + 41y = 169 41x + 29y = 181 Adding equations (1) and (2), we get 70x + 70y = 350 x+y=5 Subtracting equation (1) from equation (2), we get – 12x + 12y = – 12 –x+ y = –1 Adding equations (3) and (4), we get 2y = 4 4 =2 2 Putting this value of y in equation (3), we get x+2=5 ⇒ x=3 ⇒ Hence, x = 3 and y = 2. ⇒ y = ...(1) ...(2) 1 ...(3) ...(4) ½ ½ SECTION C 3. For x + 2y = 3 a1 = 1, b1 = 2 , c1 = 3 For (k – 1) x + (k +1) y = k + 2 a2 = k –1, b2 = k + 1, c2 = k + 2 For no solution, a1 b1 c1 = ≠ a2 b2 c2 ⇒ From I and II, ⇒ S O L U T I O N S 1 2 3 = ≠ k −1 k +1 k+2 I II III 1 1 2 = k −1 k +1 k + 1 = 2k – 2 ⇒ k = 3 P-49 2 3 ≠ k +1 k+2 2(k + 2) ≠ 3 (k + 1) 2k + 4 ≠ 3k + 3 ⇒ k ≠ 1 From II and III, ⇒ ⇒ ½ ½ 1 3 ≠ k–1 k+2 ⇒ k + 2 ≠ 3k – 3 5 ⇒ k≠– 2 5 Hence, k = 3 but k ≠ 1 and k ≠ – · 2 From I and III, ½ ½ SECTION D 4. Since BC DE and BE CD with BC ⊥ CD, BCDE is a rectangle. ∴ Opposite sides are equal. i.e., BE = CD ∴ x + y = 5 and DE = BC = x – y Since perimeter of ABCDE is 21. ∴ AB + BC + CD + DE + EA = 21 3 + x – y + x + y + x – y + 3 = 21 6 + 3x – y = 21 3x – y = 15 Adding (i) and (ii), we get 4x = 20 x =5 On putting the value of x in (i), we get y =0 ∴ ...(i) 1 1 ...(ii) 1 x = 5 and y = 0. FORMATIVE ASSESSMENT WORKSHEET - 38 Objective Type Questions 1. (C) 2. (B) 3. (B) 4. (B) 1×4=4 Word Problems 1. Let Leela’s present age = x and her daughter’s age = y Seven years ago : y – 7 = 7 (x – 7) y – 7 = 7x – 49 y – 7x = – 42 Three years later : y + 3 = 3(x + 3) y + 3 = 3x + 9 y – 3x = 6 2. Let one’s digit is y and ten’s digit is x. According to the question : x+y=9 number = 10x + y On reversing digits number = 10y + x Again according to the question, 9(10x + y) = 2(10y + x) 90x + 9y = 20y + 2x P-50 M A T H E M A T I C S -- ...(i) 1 ...(ii) 1 ...(i) 1 X T E R M – 1 90x – 2x + 9y – 20y 88x – 11y 8x – y 3. Let the rate of apple’s = Rs. x per kg The rate of grapes = Rs. y per kg According to the question, 2x + y After one month : 4x + 2y =0 =0 =0 ...(ii) 1 = 160 = 300. ...(i) 1 ...(ii) 1 Graph : y C 4 3 2 E 1 –3 –2 –1 B A 0 x' 0 –1 –2 1 2 3 4 x 5 6 D –3 y' 1. Points are A(2, 0) and B(4, 0). 2. Points are C(0, 4) and D(0, – 2). 3. Solution is (3, 1). 2 2 2 4. The area of triangle ABE = 1 × 2 × 1 = 1 unit2 2 2 5. The area of triangle CDE = 1 × 6 × 3 = 9 unit2 2 2 ●● S O L U T I O N S P-51 CHAPTER 4 Triangles SUMMATIVE ASSESSMENT WORKSHEET-39 SECTION A 1. We have (26)2 169 = (side of the smaller triangle)2 121 26 13 = side of the smaller triangle 11 ⇒ ∴ side = 11 × 26 = 22 cm. 13 1 SECTION B 2. In triangles LMK and PNK, we have ∠M = ∠N = 50º ∠K = ∠K ∴ ∆LMK ~ ∆PNK (Given) 1 (Same) (AA similarity) LM KM = PN KN ∴ a b+ c = x c b bc x= · b+ c ∴ ½ a c ½ SECTION C 3. Proof : BA PQ ⇒ BR PQ and PR CA ⇒ PR CQ A R Q B P-52 P C D M A T H E M A T I C S -- X T E R M – 1 In ∆BRD, BR PQ BD ⇒ = RD (corr. of BPT) ....(1) 1 QD PD In ∆RPD, PR CQ RD PD = QD CD ⇒ (1) and (2) ⇒ BD PD = PD CD (corr. of BPT) ....(2) 1 ⇒ PD2 = BD × CD (12)2 = BD × CD BD × CD = 44 cm 1 SECTION D 4. Given : 2 3 OB = 3 cm cos α = and In ∆AOB cos α = Let 1 OA = 2x and AB = 3x In ∆ AOB AB2 = (3x)2 = 9x2 = 5x2 = Þ Þ x= Hence, D 2 AO = 3 AB AO2 + OB2 (2x)2 + (3)2 4x2 + 9 9 A O α C 1 B 3 9 = 5 5 6 3 OA = 2x = 2 cm = 5 5 3 AB = 3x = 3 = 5 9 cm 5 BD = 2 ´ OB = 2 ´ 3 = 6 cm AC = 2´ AO So diagonal and = 2´ = 1 ½ 6 5 12 cm 5 SUMMATIVE ASSESSMENT ½ WORKSHEET-40 SECTION A 2 ar (∆DEF) DE2 DE = = ar (∆ABC) AB2 AB 1. ⇒ 44 = ar (∆ABC) ⇒ ar (∆ABC) = S O L U T I O N S FG 2 IJ H 3K 2 = 4 9 44 × 9 = 11 × 9 = 99 square unit. 4 1 P-53 SECTION B 14 cm X Y 3 6 3 cm cm 2. 60° 3 4.2 cm P 8.4 cm 70° Q 7 cm R Z From given figures, ⇒ ∴ ∠X = ∠R PQ 4·2 1 PR 3 2 1 QR PQ PR QR 7 1 = = ; = = ; = = ⇒ = = ZY 8·1 2 ZX 6 3 2 YX 14 2 ZY ZX YX ∆PQR ~ ∆ZYX 180º – (60º + 70º) = 50º 1 (SSS) 1 SECTION C 3. We have, ⇒ (Q ∠P is common and PQR ~ PAB FG IJ H K 32 F 4kI =G J area ∆PAB H 3k K area ∆PQR PQ = area ∆PAB PA 2 P 3k 2 ⇒ PA PB = ) 1 PQ PR 4k 1 B A k Q area ∆PAB = 18 cm2 ∴ area of AQRB = area of ∆PQR – area of ∆PAB = 32 – 18 = 14 cm2 R 1 SECTION D 4. Let BD = DE = EC = x A BE = 2x BC = 3x AE2 = AB2 + BE2 = AB2 + 4x2 AC2 = AB2 + BC2 = AB2 + AD2 = AB2 + BD2 = AB2 + x2 Now, and ...(1) 1 9x2 8AE2 = 8AB2 + 32x2 3(AB2 + 9x2) + 5 (AB2 + x2) 3AC2 + 5AD2 = B x D x E x C 1 [Multiply eqn. (1) by 8] ...(2) 1 = 3AB2 + 27x2 + 5AB2 + 5x2 = 8AB2 + 32x2 ∴ 3AC2 + 5AD2 = 8AE2. ...(3) [ From eqn. (2) & (3)] Proved. 1 SUMMATIVE ASSESSMENT WORKSHEET-41 SECTION A Perimeter of ∆ABC length of AC = length of PR Perimeter of ∆PQR 1. ⇒ 20 AC = 40 8 ⇒ AC = P-54 8 = 4 cm. 2 M A T H E M A T I C S -- 1 X T E R M – 1 SECTION B 2. Suppose the median AD intersects PQ at E. Given, PQ || BC ⇒ ∠APE = ∠B and ∠AQE = ∠C So in ∆APE and ∆ABD, ∠APE = ∠ABD A ∠PAE = ∠BAD ∴ 1 ∆APE ~ ∆ABD PE AE = BD AD ∆AQE ~ ∆ACD ⇒ Similarly, P Q E B ...(1) 1 C D QE AE = CD AD ...(2) ½ From eqns. (1) and (2), we have PE QE = BD CD ⇒ ⇒ Hence, AD bisects PQ. PE QE = , BD BD PE = QE (as CD = BD) Proved. ½ SECTION C 3. Given : PS PT = SQ TR P ∠PST = ∠PRQ To prove : PQR is isosceles triangle. Proof : By converse of B.P.T., we get PS PT = SQ TR ST || QR S Q T R 1 ∴ ∠PST = ∠PQR (Corresponding angles) 1 ∴ ∠PST = ∠PRQ (Given) ∠PQR = ∠PRO So, ∆PQR is isosceles triangle. Proved. 1 SECTION D 4. Given : ABC is a triangle in which DE || BC. AD AE To prove : = BD CE Construction : Draw DN ⊥ AE and EM ⊥ AD, Join BE and CD. 1 Proof : In ∆ADE, area (∆ADE) = × AE × DN 2 In ∆DEC, 1 area (∆DCE) = × CE × DN 2 S O L U T I O N S 1 ...(i) ...(ii) P-55 By (i) / (ii) 1 × AE × DN area (∆ADE) = 2 1 area (∆DEC) × CE × DN 2 ⇒ AE area (∆ADE) = CE area (∆DEC) ...(iii) ½ A 1 area (∆ADE) = × AD × EM 2 Now in ∆ADE, and in ∆DEB, area (∆DEB) = ...(iv) ½ 1 × EM × BD 2 D 1 × AD × EM area (∆ADE) = 2 area (∆DEB) 1 × BD × EM 2 By (iv) / (v), N M ...(v) E ½ C B area (∆ADE) AD = · ...(iv) ½ area (∆DEB) BD ∆DEB and ∆DEC lies on the same base DE and between same parallel lines DE and BC. ∴ area (∆DEB) = area (∆DEC) ⇒ AE area (∆ADE) = CE area (∆DEB) From equations (vi) and (vii), we get From equation (iii), ...(vii) AE AD = · CE BD Proved. 1 SUMMATIVE ASSESSMENT WORKSHEET-42 SECTION A 1. Q PQ || MN So, ⇒ ⇒ ⇒ KQ KP = QN PM KQ KP = KN − KQ PM KQ 4 = 20.4 – KQ 13 4 × 20.4 – 4KQ = 13KQ ⇒ 17KQ = 4 ×20·4 ⇒ KQ = 20·4 × 4 = 4·8 cm. 17 1 SECTION B 2. Since ABCD is a rhombus. So in ∆BOC A BC2 = OB2 + OC2 2 BD AC = + 2 2 BD 2 + AC2 4 4BC2 = AC2 + BD2 BC2 = ⇒ P-56 D O 2 1 B M A T H E M A T I C S -- C 1 X T E R M – 1 3. According to question, ∠QPR = 90º QR2 = QP2 + PR2 ∴ ∴ PR = 1 26 2 − 24 2 = 100 = 10 cm ∠PKR = 90º ∴ 8 cm PK = 102 − 82 = 100 − 64 1 = 36 = 6 cm. SECTION C 4. According to question, BC 2 BD = CD = ⇒ 1 A BC = 2BD Using Pythagoras theorem in the right ∆ABC, we have AC2 = AB2 + BC2 = AB2 + 4BD2 = (AB2 + BD2) 1 + 3BD2 AC2 = AD2 + 3CD2. B D C 1 SECTION D 5. Given: ABC is right angled at B and D is the mid-point of BC. ∴ BD = DC = A B 1 BC 2 ½ ½ D C In ∆ABD, AD2 = AB2 + BD2 (Pythagoras Theorem) ...(1) ½ In ∆ABC, AC2 = AB2 + BC2 (Pythagoras Theorem) ...(2) ½ From eqn. (1), AD2 = AB2 + ⇒ FG BCIJ H2K 2 4AD2 = 4AB2 + BC2 ⇒ BC2 = 4AD2 – 4AB2 Using this in (2), we get AC2 = AB2 + 4AD2 – 4AB2 AC2 = 4AD2 – 3AB2. S O L U T I O N S (D is the mid-point of BC) ½ ...(3) ½ Proved. 1 P-57 SUMMATIVE ASSESSMENT WORKSHEET-43 SECTION A 1. Given 2AB = DE and BC = 8 cm Q ∆ABC ~ ∆DEF So, AB DE = BC EF ⇒ AB 2AB = 8 EF ⇒ A B (1) D C E (2) F 1 EF = 2 × 8 = 16 cm. SECTION B 2. Since the ratio of the corresponding sides of similar triangles is same as the ratio of their perimeters. ∴ ∆ABC ~ ∆PQR ⇒ AB BC AC 36 = = = PQ QR PR 24 ⇒ AB 36 = PQ 24 ⇒ AB 36 = 10 24 ⇒ AB = 1 36 × 10 = 15 cm. 24 1 3. Proof : In quadrilateral ABCD, AO CO = BO DO ⇒ AO BO = CO DO In ∆ABD, ...(1) O EO | AB ∴ AE BO = ED DO From eqns. (1) and (2), AE AO = ED CO In ∆ADC, AE AO = ED CO ⇒ E (Construction) B (By BPT) A ...(2) 1 EO | DC (Converse of BPT) 1 EO | AB (Construction) ∴ AB | DC ⇒ In quad. ABCD, AB | DC 1 ⇒ ABCD is a trapezium. P-58 (Given) C D Proved. M A T H E M A T I C S -- X T E R M – 1 SECTION C AP 3.5 1 = = AB 10.5 3 1. A AQ 3 1 = = AC 9 3 ⇒ 3.5 AP AQ = and ∠A is common AB AC ∆APQ ~ ∆ABC In ∆ABC, ⇒ AP PQ = AB BC ∴ P 7 1 3 4.5 1 Q (SAS) 6 C B 4·5 1 = ⇒ BC = 13·5 cm. BC 3 1 SECTION D 4. In cyclic quadrilateral ABCD, we have ∠A + ∠C = and ∠Β + ∠D = ∴ x + 7 + 3y + 23 = ⇒ x + 3y = and y + 8 + 4x + 12 = ⇒ 4x + y = Solving equations (1) and (2), we get y = ∴ ∠A = ∠B = ∠C = ∠D = 180º 180º 180 150 180 160 1 ..(1) 1 ...(2) 1 40º (x + 7)º = 37º (y + 8)º = 48º (3y + 23)º = 143º (4x + 12)º = 132º 1 SUMMATIVE ASSESSMENT WORKSHEET-44 SECTION A 1. Given, Perimeter of ∆ABC = 32 cm Perimeter of ∆PQR = 48 cm For similar triangles, we know that AB BC Perimeter of ∆ABC AC = = = PQ QR Perimeter of ∆PQR PR AC 32 = 6 48 6 × 32 AC = = 4 cm. 48 ⇒ ⇒ A B S O L U T I O N S P C Q R P-59 SECTION B 2. According to question, AO = 20 cm, BO = 12 cm, PB = 18 cm In ∆AQO and ∆BPO, ∠AOP = ∠BOP ∠A = ∠B = 90º ∆AQO ~ ∆BPO ∴ (Vertically opposite angles) P 1 O A AQ QO AO = = BP PO BO AQ 20 = 18 12 AQ = 30 cm. B Q 1 SECTION C 3. Given : DB⊥BC, DE⊥AB and AC⊥BC. BE DE ∠1 + ∠2 ∠2 + ∠3 ∠1 ∠1 ∠ACB ∆ABC To prove : Proof : In ∆ABC, But ⇒ In ∆ABC and ∆BDE, ∴ = = = = = = ~ AC BC 90º 90º ∠3 ∠3 ∠DEB = 90º ∆BDE A 3 ⇒ 2 E B AC BE = · BC DE (∠C = 90º) 1 (Given) 1 D 1 C (Proved) (Given) (AA) 1 SECTION D ∆ABC ~ ∆PQR, ar ∆ABC = ar ∆PQR 4. Given : and A B To prove : Proof : ⇒ Also ⇒ ⇒ ∴ By SSS congruency, P-60 C Q R ∆ABC ≅ ∆PQR ∆ABC ~ ∆PQR AB2 BC2 CA 2 ar (∆ABC) = = = ar (∆PQR) PQ2 QR 2 RP 2 ar (∆ABC) = ar (∆PQR) (Given) ..(1) 1 (Given) ar (∆ABC) =1 ar (∆PQR) From equation (1), we have ⇒ P 1 AB2 BC2 CA 2 = = =1 PQ2 QR 2 RP 2 AB BC CA = = =1 PQ QR RP AB = PQ BC = QR CA = RA ∆ABC ≅ ∆PQR. M A T H E M A T I C S -- 1 1 X T E R M – 1 SUMMATIVE ASSESSMENT WORKSHEET-45 SECTION A 1. For similar triangles, FG perimeter of ∆1 IJ H perimeter of ∆2 K F 4 I 2 16 · = G J = H 25 K 625 area of triangle 1 = area of triangle 2 2 1 SECTION B 2. Since G is mid point of PQ, ∴ PG = GQ PG =1 GQ According to question, GH | QR ∴ PG PH = GQ HR PH HR PH = HR. 1= ⇒ Hence, H is mid-point of PR. P 1 H G (BPT) R Q 1 SECTION C 3. According to question, ∴ DE | AB CD CE = AD EB (By BPT) ...(1) ½ CF CE = FD EB (By BPT) ...(2) ½ Again since FE || DB, ∴ From equations (1) and (2), CD CF = AD FD ⇒ AD FD = CD CF ⇒ AD FD 1+ = +1 CD CF CD + AD FD + FC = CD FC ⇒ S O L U T I O N S AC CD = CD FC 2 CD = AC.FC C F D E 1 A B 1 P-61 SECTION D 4. Since, ∆ABC is equilateral, and AD || BC BC 2 AD2 = AB2 – BD2 ∴ BD = DC = In right ∆ADB = AB2 + BC2 4 = AB2 – AB2 4 AD2 = 1 A B D C 3 AB2 = 4AD2 = 3AB2. 4 (Q AB = BC) SUMMATIVE ASSESSMENT WORKSHEET-46 SECTION A 1. For similar triangles, we know that A D 2 ⇒ ⇒ BC area of ∆ABC = area of ∆DEF EF 2 (4) 2 16 80 = = area of ∆DEF (5) 2 25 area of ∆DEF = 80 × 25 = 125 cm2. 16 B C 4 cm E F 5 cm SECTION B 2. In ∆APB and ∆DPC, we have ∠ A = ∠ D = 90° and ∠ APB = ∠ DPC (vertically opposite angles) Thus by AA criterion of similarity, we have ∆APB ~ ∆DPC ⇒ = A D P 1 B C PB AP = PC DP AP × PC = PB × DP 1 SECTION C 3. To prove : O Construction : Draw AE ⊥BC and DF⊥BC. Proof : In ∆AOE and ∆DOF, ⇒ ∴ P-62 C A ar ( ∆ABC) AO = ar ( ∆DBC) DO E B ∠AOE = ∠DOF ∠AEO = ∠DFO = 90º ∆AOE ~ ∆DOF ½ F D ½ (Vertically opposite angles) (Construction) (AA) AO AE = DO DF M A T H E M A T I C S -- ...(1) 1 X T E R M – 1 1 × BC × AE AE ar ( ∆ABC) = 2 = 1 DF ar ( ∆DBC) × BC × DF 2 Now, = ½ AO DO [From equation (1)] ½ SECTION D 4. Proof : BC = 2 BD A B P D C Q Given, AB BC AD = = PQ QR PM ⇒ AB 2BD AD = = PQ 2QM PM ∴ ⇒ R (PM is the median) 1 1 AB BD AD = = PQ PM QM ∆ABD ~ ∆PQM ∠B = ∠Q, In ∆ABC and ∆PQR, AB BC = PQ QR and ∠B = ∠Q ∴ M QR = 2QM and In triangles ABD and PQM, (AD is the median) (SSS Similarty) (By CPCT) 1 ∆ABC ~ ∆PQR. Proved. 1 SUMMATIVE ASSESSMENT WORKSHEET-47 SECTION A 1. In the ∆ ABC, DE || BC ∴ AD AE = DB EC ⇒ x x+2 = x−2 x −1 ⇒ A D B x(x – 1) = (x – 2) (x + 2) ⇒ x2 – x = x2 – 4 ⇒ x = 4. S O L U T I O N S C E 1 P-63 SECTION B 2. Draw AC intersecting EF at G. In ∆CAB, GF || AB ⇒ In ∆ADC, ⇒ From (i) and (ii), we have B A AG BF = CG FC EG || DC AE AG = ED CG ...(i) 1 E F ...(ii) C D AE BF = · ED FC 1 SECTION C 3. In ∆ABC PQ || AB Again in ∆BCD, D A AQ BP = QC PC PR || BD ∴ (By BPT) ...(i) 1 BP DR = PC RC ⇒ AQ DR = QC RC QR || AD From (i) and (ii), ⇒ R Q B P (By BPT) ...(ii) 1 C (By converse of BPT) 1 SECTION D 4. Q ⇒ It is given that ⇒ ∆FEC EC ∠1 AE ≅ = = = ∆GBD BD ∠2 AD ...(1) 1 ...(2) 1 A D 1 3 F B 2 E 4 C G From eqns. (1) and (2), ⇒ ⇒ Thus in ∆ADE and ∆ABC, AE AD = EC BD DE || BC, ∠ 1 = ∠ 3 and ∠ 2 = ∠ 4 (converse of BPT) 1 ∠A = ∠A ∠1 = ∠3 ∠2 = ∠4 So by AAA criterion of similarity, we have ∆ADE ~ ∆ABC. P-64 M A T H E M A T I C S -- Proved. 1 X T E R M – 1 SUMMATIVE ASSESSMENT WORKSHEET-48 SECTION A 1. Since ST || QR PS PT = QS TR ⇒ 3 PT = 5 PR − PT ⇒ 3 PT = 5 28 − PT ⇒ ⇒ 5PT = 84 – 3PT 8PT = 84 ⇒ PT = 84 = 10·5 cm 8 1 SECTION B 2. In ∆CAB, ∴ But, ∴ ∠A AC AD AC – AD CD Dividing (2) by (1), we get By converse of BPT, = ∠B = CB = BE = CB – BE = CE (Given) (By isosceles triangle property) 1 (Given) ...(1) C ...(2) CD CE = AD BE DE | AB. E D 1 B A SECTION C 3. In ∆ADB, AB2 = AD2 + BD2 In ∆ADC, AC2 = AD2 + CD2 Sultracting eqn. (2) from eqn. (1), we get AB2 – AC2 = BD2 – CD2 (Pythagoras Theorem) ...(1) (Pythagoras Theorem) ...(2) A 1 FG 3 BCIJ − FG 1 BCIJ H4 K H4 K 2 = ∴ ∴ 2(AB2 – AC2) = BC2 2(AB)2 = 2AC2 + BC2. 2 = BC2 2 1 B 3x x D C 1 SECTION D 4. Q ∴ In ∆ADB and ∆PDQ, By A.A. similarity, ∴ S O L U T I O N S AB ∠ABQ ∠ADB ∠ABQ ∆ADB | = = = ~ PQ ∠PQD ∠PDQ ∠PQD ∆PDQ DQ PQ = DB AB DQ z = DB x A (Corresponding angles) 1 (Common) C x P y 1 D ...(i) z B Q P-65 ∆PBQ ~ ∆CBD Similarly, z BQ = y DB and ...(ii) Adding (i) and (ii), we get z z DQ + BQ BD + = = DB BD x y ⇒ z z + =1 x y ∴ 1 1 1 + · = x y z 1 1 SUMMATIVE ASSESSMENT WORKSHEET-49 SECTION A ar (∆ABC) AC2 = = ar (∆PQR) PR 2 1. ⇒ FG AC IJ H PR K 2 81 7·2 = 169 PR 2 ⇒ 2 7·2 9 = PR 13 ⇒ PR = 2 ⇒ 7·2 9 = PR 13 13 × 7·2 = 10·4 cm. 9 1 SECTION B 2. ABCD is a square. ∆BCE is described on side BC is similar to ∆ACF described on diagonal AC. Since ABCD is a square. So AB = BC = CD = DA and AC = Now ⇒ ⇒ ⇒ 2 BC ∆BCE ~ ∆ACF Area (∆BCE) BC2 = Area (∆ACF) AC2 Area (∆BCE) BC2 1 = = 2 Area (∆ACF) 2 ( 2 BC) Area (∆BCE) = 1 2 F D C 1 E A Area (∆ACF) B 1 SECTION C 3. Given : ∆ABC, right angled at A. BL and CM are medians. To prove : 4(BL2 + LM2) = 5BC2. Proof : In ∆ABL, BL2 = AB2 + AL2 FG AC IJ H2K 2 F AB IJ + G H2K 2 = AB2 + In ∆ACM, 1 L (BL is median) CM2 = AC2 + AM2 = AC2 P-66 C A M B (CM is median) 1 , M A T H E M A T I C S -- X T E R M – 1 BL2 + CM2 = AB2 + AC2 + AC2 AB2 + 4 4 4(BL2 + CM2) = 5AB2 + 5AC2 = 5(AB2 + AC2) = 5BC2. Proved. 1 SECTION D 4. Given : In ∆ABC and ∆DEF, AP and DQ are medians, such that A B D P C E AP AB BC = = DQ DE EF Q ...(i) F ∆ABC ~ ∆DEF To prove : AB = DE Proof : From (1), 1 2 1 2 BC AP EF = DQ 1 BP AP AB = = EQ DQ DE ∆ABP ~ ∆DEQ ∠B = ∠E ⇒ ⇒ ⇒ In ∆ABC and ∆DEF, and [SSS similarity] 1 AB BC = DE EF ∠B = ∠E, ∆ABC ~ ∆DEF. 1 (By SAS criterion) Proved 1 SUMMATIVE ASSESSMENT WORKSHEET-50 SECTION A 1. ⇒ ⇒ Perimeter of ∆ABC AB = Perimeter of ∆PQR PQ 60 AB = 36 9 60 × 9 AB = = 15 cm. 36 1 SECTION B 1. Construction : Join BD. Proof : ∴ In ∆ADB, In ∆BCD, ∴ S O L U T I O N S AB AB AE ED BG GD AE ED || EF and AB | | CD || CD || EF BG = (BPT) GD BF = (BPT) FC BF = · FC C D E G F 1 A B 1 P-67 SECTION C ∆AOB ~ ∆COD 1. By area theorem, ar (∆AOB) AB2 = ar (∆COD) DC2 ⇒ ar (∆AOB) (2CD) 2 4 = = ar (∆COD) 1 (CD) 2 ∴ (A similarity) C D 1 ar (∆AOB) : ar (∆COD) = 4 : 1. O 1 B A 1 SECTION D 4. Given. The line segment XY is parallel to side AC of ∆ABC. Proof : In ∆BAC and ∆BXY, ∠B = ∠B ∠BAC = ∆BXY ∴ ∆BAC ~ ∆BXY We have, FG BA IJ H BX K F AB IJ = G H BX K ar (∆BAC) = ar (∆BXY) 2 × ar (∆BXY) ar (∆BXY) ⇒ AB = BX ⇒ 1 BX = 2 AB ⇒ ⇒ 1– (Common) (Corresponding angles) (By AA similarity) 1 2 A 2 1 X 2 B Y 1 BX = 1– 2 AB AB − BX = AB 2 −1 AX = AB 2 −1 C 1 2 2 1 · SUMMATIVE ASSESSMENT WORKSHEET-51 SECTION A 1. We have Area (∆ABC) BC2 = Area (∆DEF) EF2 ⇒ 9 (2·1)2 = 16 EF 2 ⇒ 3 2·1 = 4 EF ⇒ P-68 EF = 4 × 2·1 = 2·8 cm 3 M A T H E M A T I C S -- 1 X T E R M – 1 SECTION B 2. Since, XY || QR ∴ PX PY = XQ YR P 4 cm 1 PY 4 = = 2 PR − PY PR − 4 ⇒ ⇒ X PR – 4 = 8 ⇒ PR = 12 cm ∴In right ∆PQR, R Q QR2 = PR2 – PQ2 1 Y = 122 – 62 = 144 –36 = 108 QR = 6 3 cm 1 SECTION C 3. Given : In ∆ABC, AD⊥BC and AD2 = BD × CD. To prove : ABC is a right triangle. Proof : In right triangles ABD and ACD, applying Pythagoras theorem A AB2 = AD2 + BD2 AC2 = AD2 + CD2 and ∴ AB2 + AC2 = 2AD2 + BD2 1 + CD2 = 2(BD × CD) + BD2 +CD2, B D C given AD2 = BD × CD = (BD + i.e., AB2 + AC2 = CD)2 1 = BC2 BC2 ⇒ ∆ABC is a right triangle. 1 SECTION D 4. In trapezium ABCD, Also, In trapezium ABCD, ∴ In ∆BGE and ∆BDC, AB || DC and DC = 2AB. BE 4 = EC 3 EF || AB || CD AF BE 4 = = FD BC 3 ∠B = ∠B B A F D G E C ∠BEG = ∠BCD (Common corresponding angles) ∴ ∆BGE ~ ∆BDC (AA similarity) 1 ⇒ EG BE = CD BC As, BE 4 EC 3 = ⇒ = EC 3 BE 4 ⇒ ⇒ S O L U T I O N S EC 3 +1= +1 BE 4 ...(1) 1 EC + BE 7 = BE 4 P-69 ⇒ BC 7 BE 4 = ⇒ = BE 4 BC 7 ⇒ EG 4 = CD 7 4 CD 7 ∆DGF ~ ∆DBA ⇒ EG = Similarly, ⇒ DF FG = DA AB ⇒ FG 3 = AB 7 ⇒ FG = Adding (i) and (ii), EG + FG = ...(i) 1 LMQ AF = 4 = BE OP 7 BD MM FD PP EC 3 ⇒ = MN BC 7 PQ 3 AB 7 4 3 CD + AB 7 7 b g 4 3 8 3 11 × 2 AB + AB = AB + AB = AB 7 7 7 7 7 7EF = 11AB. ⇒ EF = ∴ ...(ii) SUMMATIVE ASSESSMENT Proved. 1 WORKSHEET-52 SECTION A Area (∆AOB) 4 Area (∆COD) = 1 1. ⇒ D C 84 4 Area (∆COD) = 1 Area (∆COD) = O 84 = 21 cm2. 4 A B 1 SECTION B 2. Proof : In ∆POQ, AB | PQ, (Given) OB OA = BQ AP ...(i) AC | PR, (Given) ∴ OA OC = AP CR ...(ii) From (i) and (ii), we get OB OC = BQ CR ∴ In ∆OPR, ∴ P-70 (BPT) 1 (BPT ) 1 BC | QR, (By converse of BPT) 1 M A T H E M A T I C S -- X T E R M – 1 SECTION C 3. Since DE || BC. By BPT, we have AD AE = DB EC ⇒ A DB EC = AD AE 1 Adding 1 on both sides, D DB EC +1= +1 AD AE DB + AD EC + AE = AD AE B E C 1 AB AC = AD AE ⇒ AD AE = · AB AC 1 SECTION D 4. In ∆ABC, DP || BC AD AP = , DB PC (BPT) ...(1) A D P E B Similarily, in ∆ABC Q EQ || AC From figure, BQ BE = QC EA EA = AD + DE = BE + ED = BD Then (2) becomes, BQ AD = QC BD ⇒ S O L U T I O N S ..(2) 1 (Given, BE = AD) 1 ...(3) 1 From (1) and (3), we get ∴ By converse of BPT, C BQ AP = QC PC PQ || AB. 1 P-71 FORMATIVE ASSESSMENT WORKSHEET-53 Objective Type Questions 1. (D) 2. (A) 3. (C) 4. (C) 5. (A) Fill in the blanks 1. 2. 3. 4. 5. Same Parallel Similar Proportional SAS Quiz 1. In given figure B'C'||BC. Find AB. AB 3 = 3·6 2 3·6 × 3 2 AB = 5·42 cm 2. In a right angled triangle, the square of hypotenuse is equal to the sum of the squares of the other two sides. AB = 3. AB = AD + BD = 1·5 + 3 = 4·5 cm. According to BPT, AE AD = AC AB or 1·5 1 = 4·5 AC ⇒ 1 1 = 3 AC ⇒ AC = 3 cm. EC = AC – AE = 3 – 1 = 2 cm. DB 7·2 4 AD = = = EC 5·4 3 AB 4. According to BPT, AD 4 = 1·8 3 ⇒ AD = 1·8 × 4 = 2·4 cm 3 5. No, because corresponding sides are not in proportion. A 6 3 2 B P 4 C Q 5 4 R ●● P-72 M A T H E M A T I C S -- X T E R M – 1 CHAPTER 5 Introduction to Trigonometry and Trigonometric Identities SUMMATIVE ASSESSMENT WORKSHEET - 54 SECTION A 1. tan is not defined when θ is equal to 90º i.e., tan 90º = ∞. 2. 1 cos 48º cos 42º – sin 48º sin 42º = cos (90º – 42º) cos (90º – 48º) – sin 48º sin 42º = sin 42º sin 48º – sin 48º sin 42º = 0 1 SECTION B 3. 1 sin 90° 1 1 + = + cos45° cosec 30° 1/ 2 2 = = 1 1 2 + 2 2 2+1 2 1 SECTION C 4. L.H.S. = = = S O L U T I O N S 1 − cos θ 1 + cos θ = 1 − cos 60° 1 + cos 60° 1 − 12 1 + 12 1 2 3 2 = 1 2 3 2 = 1 3 1 P-73 R.H.S. = sin θ 1 + cos θ = sin 60° 1 + cos 60° = 3/2 1 1+ 2 = 3/2 3/2 1 = 3 1 1 = L.H.S. Hence relation is verified for q = 60°. SECTION D 4 4 2 2 5. 4 sin 30° + cos 60° – 3 cos 45° – sin 90° ( ) ( ) 2 éæ ù éæ 1 ö 4 æ 1 ö 4 ù êç 1 ö÷ – 1 2 ú êç ÷ + ç ÷ ú ÷ ( ) ú = 4 êç 2 ÷ ç 2 ÷ ú – 3 êç êè ø è ø ûú êè 2 ø ë ë ûú 1 é1 é1 ù 1ù = 4 ê + ú – 3 ê -1ú ê ú ê ë16 16 û ë2 úû 1 = 1 3 + 2 2 1 = 4 = 2. 2 1 SUMMATIVE ASSESSMENT WORKSHEET-55 SECTION A 1. sin 38° sin 52° – cos 38° cos 52° = sin (90° – 52°) sin (90° – 38°) – cos 38° cos 52° = cos 52° cos 28° – cos 38° cos 52° = 0. sin θ = cos θ 2. ⇒ ⇒ 1 sin θ cos θ = 1 tan θ = 1 = tan 45° θ = 45°. 1 SECTION B 3. Q Squaring on both sides sin θ – cos θ = 1 2 æ1 ö2 (sin θ – cos) 2 = ç ç ÷÷ è2 ø P-74 M A T H E M A T I C S -- X T E R M – 1 Þ sin2 θ + cos2 θ – 2 sin θ cos θ = 1 4 1 – 2 sin θ cos θ = 1 4 1 3 = 4 4 (sin θ + cos θ)2 = sin2 θ + cos2 θ + 2 sin θ cos θ 2 sin θ cos θ = 1 – Again 1 = 1 + 2 sin θ cos θ 3 7 = 4 4 = 1+ sin θ+ cos θ = Þ 7 7 = 4 2 1 SECTION C 2 2 3 1 2 5 + 4 − (1) 2 2 2 2 2 5 cos 60° + 4 cos 30° – tan 45° 2 2 = 1 1 sin 2 30° + cos2 60° + 2 2 5 +3–1 4 = 1 1 + 4 4 5 +2 4 = 1 2 4. 13 26 13 4 = · = 1 = 4 2 2 1 1 1 SECTION D 5. Given : Q c sin q = cos2 2 c +d2 q = 1 – sin2 q æ c ç = 1– ç 2 2 è c +d = 1– = = Þ S O L U T I O N S cos q = ö2 ÷ ÷ ø 1 c2 c2 + d 2 c2 + d2 - c2 c2 + d2 d2 2 c + d2 d c2 + d 2 1 1 P-75 Again, tan q = = sin q cos q c / c2 + d 2 d / c2 + d 2 c = d 1 SUMMATIVE ASSESSMENT WORKSHEET-56 SECTION A 1. sin 45º + cos 45º = 2. (sec A + tan A ) (1 – sinA) = 1 2 + 1 2 = 2 2 = 2. 1 FG 1 + sin A IJ (1 – sin A) H cos A cos A K 1 + sin A = cos A (1 – sin A) = 1 − sin 2 A cos A = cos 2 A = cos A cos A 1 SECTION B 3. L.H.S. = = = = = 1 − cos A 1 + cos A 1 − cos A 1 − cos A × 1 + cos A 1 − cos A 1 (1 − cos A)2 (1 − cos2 A) (1 − cos A)2 sin 2 A 1 − cos A sin A cos A 1 = sin A − sin A Proved. 1 = cosec A – cot A = R.H.S. SECTION C 4. L.H.S. = cosec2 q – tan2 (90° – q) sin 2 (90° - q) = – cos2 (90° - q) sin 2 q 1 P-76 M A T H E M A T I C S -- X T E R M – 1 2 1 sin (90° –q) – 2 2 sin q sin q = 2 1 = 1 – 2 sin q cos q 2 sin q 2 = = = = = = 1 - cos q 2 sin q sin 2 q 1 sin 2 q 1 sin2 θ + cos2 θ sin2 θ + sin2 (90° – θ) R.H.S. 1 SECTION D cosec2 (90º – θ) = sec2 θ Sol. sec2 θ – tan2 θ = 1 1 cos2 40º + cos2 50º = cos2 (90º – 50º) + cos2 50º sin2 50º + cos2 50º = 1 tan2 30º F 1 IJ = G H 3K 2 = 1 3 1 sec2 52ºsin2 38º = sec2 52º.sin2 (90º – 52º) = sec2 52º.cos2 52º = 1 cosec2 70º – tan2 20º = cosec2 (90º – 20º) – tan2 20º = sec2 20º – tan2 20º = 1 ∴ 1 Given expression = − 4 = 1 1 ×1 3 3(1) 2× 1 2 9–8 1 − = = · 4 9 36 36 SUMMATIVE ASSESSMENT 1 WORKSHEET-57 SECTION A 5 sin q + 4 cos q 5 cos q + 4 5 (1) + 4 9 = = = 9. = 5 sin q - 4 cos q 5 cos q - 4 5 (1) - 4 1 1. tan θ = 1, 2. ⇒ Since, So, sin2 A sin A (sin A – 2) sin A A = = ≠ = 2 sin A 0 2, ∴ sin A = 0 0º. 1 1 SECTION B 2 3. 2 cos ec 2 30° + 3 sin 2 60° − 3 3 1 3 2 tan 2 30° = 2(2) + 3 − 2 4 4 3 = 4+ S O L U T I O N S 1 9 3 − 4 4 P-77 = 16 + 9 − 3 4 = 25 − 3 4 1 SECTION C 4. L.H.S. = = cos 3 θ + sin 3 θ cos 3 θ – sin 3 θ + cos θ + sin θ cos θ – sin θ (cos θ + sin θ) (cos2 θ + sin 2 θ − sin θ cos θ) (cos θ + sin θ) + (cos θ − sin θ) (cos2 θ + sin 2 θ + sin θ cos θ) (cos θ − sin θ) = (1 – sin θ cos θ) + (1 + sin θ cos θ) = 2 – sin θ cos θ + sin θ cos θ = 2 = R.H.S. 1 1 1 Proved SECTION D 5. sin2 30° cos2 45° + 4 tan2 30° + 1 1 sin2 90° – 2 cos2 90° + 2 24 2 2 2 1 1 1 1 1 + 4 + (1)2 − 2(0) + = × 2 2 2 24 3 = 1 æ1 ö 4 1 1 ç ÷÷ + + + ç 4 è 2 ø 3 2 24 1 1 = 1 4 1 1 + + + 8 3 24 2 = 3+32+1+12 24 1 = 48 = 2. 24 1 SUMMATIVE ASSESSMENT WORKSHEET-58 SECTION A 2 1. 2 3 1 2 2 − sin 60º – sin 30º = 2 2 = 2. x = a cos θ, y = b sin θ Now, b2x2 + a2y2 – a2b2 = = = = P-78 3 1 2 1 − = = · 4 4 4 2 1 b2(a cos θ)2 + a2 (b sin θ)2 – a2b2 a2b2 cos2 θ + a2b2 sin2 θ – a2b2 a2b2 (sin2 θ + cos2 θ) – a2b2 a2b2 – a2 b2 = 0. M A T H E M A T I C S -- 1 X T E R M – 1 SECTION B 2 cot2 A – 1 = 2(cosec2 A – 1) – 1 3. = = = 2 sin 2 A 2 æ 3 ö2 ç ÷ ç 2 ÷ è ø –3 –3 8 -1 -3 = 3 3 1 SECTION C 4. According to question, 1 sin 3θ = cos (θ – 6º) ⇒ cos (90º – 3θ) = cos (θ – 6º) ⇒ 90º – 3θ = θ – 6º ⇒ 1 4θ = 90º + 6º = 96º θ= 96º = 24º 4 1 SECTION D tan θ = 5. In ∆ABC, AC2 = AB2 + BC2 = 1+5=6 ⇒ (i) AB 1 = BC 5 AC = cosec 2 θ − sec 2 θ cosec 2 θ + sec 2 θ = 1 6 2 6 ( 6)2 − 5 6 ( 6) + 5 2 2 A 6 5 = 6 6+ 5 = θ B 24 2 = · 36 3 F 1 IJ + F 5 I sin θ + cos θ = G H 6 K GH 6 JK 2 (ii) 2 5 C 1½ 2 2 = S O L U T I O N S 6 1 6− 1 5 + = 1. 6 6 ½ P-79 SUMMATIVE ASSESSMENT WORKSHEET-59 SECTION A cosec θ – cot θ = 1. 1 4 ⇒ (cosec q - cot q)(cosec q + cot q) 1 = (cosec q + cot q) 4 ⇒ 1 cosec 2 q - cot 2 q = 4 cosec q + cot q ⇒ ⇒ 1 1 + cot 2 q - cot 2 q = 4 cosec q + cot q cosec θ + cot θ = 4. 11 2. cot 2 θ − 1 sin 2 θ 1 11 – = 2 2 cos θ cos2 θ cos θ 11 sin 2 θ − 1 = 11 2 cos θ 1 − sin 2 θ = – 11 2 cos θ F cos θ I GH cos θ JK 2 = – 11 2 1 = – 11. SECTION B 3. Here 3 sin θ – cos θ = 0 and 0º < θ < 90º ⇒ 3 sin θ = cos θ ⇒ sin θ 1 = cos θ 3 ⇒ tan θ = ⇒ 1 3 1 LMQ tan θ = sin θ OP cos θ Q N = tan 30º θ = 30º. 1 SECTION C 4. (i) Clearly, distance covered by the artist is equal to the length of the rope AC. Let AB be the vertical pole of height 12 m. It is given that ∠ACB = 30º Thus, in right-angled triangle ABC, AB AC 1 12 ⇒ = 2 AC ⇒ AC = 24 m. Hence, the distance covered by the circus artist is 24 m. A Rope 12 m sin 30º = P-80 M A T H E M A T I C S -- 30º C B 2 X T E R M – 1 (ii) Trigonometric ratios of an acute angle of a right angled triangle. (iii) Single mindedness helps us to gain success in life. ½ ½ SECTION D 5. sec q - 1 sec q + 1 + sec q + 1 sec q –1 L.H.S. = = = (sec q - 1) + (sec q + 1) 1 (sec q + 1)(sec q - 1) 2 sec q 2 sec q - 1 = 2 sec q tan q 1 1 cos q = 2 × cos q ´ sin q 1 = 2 × sin q 1 = 2cosec θ = R.H.S. SUMMATIVE ASSESSMENT WORKSHEET-60 SECTION A tan θ + cot θ = 5 9. On squaring both sides tan2 θ + cot2 θ + 2 tan θ cot θ = 25 ⇒ tan2 θ + cot2 θ + 2 tan θ ⇒ 1 = 25 tan θ tan2 θ + cot2 θ = 23. sec 2A = cosec (A – 27º) 2. 1 We know that sec 2A = cosec (90º – 2A) ⇒ A – 27º = 90º – 2A ⇒ 3A = 117º ⇒ A= 117º = 39º. 3 1 SECTION B 3. 6cos (90° – 23)º + cosec (90° – 79)º + 3cot (90° – 48)º 6sin 23°+ sec 79°+ 3 tan 48° = cosec 11º + 3cot 42º + 6cos 67º cosec11°+ 3cot 42°+ 6 cos 67° = 6cos 67º +cosec11º + 3cot 42º cosec 11º + 3cot 42º + cos 67° = 1. S O L U T I O N S 1 1 P-81 SECTION C 4. (i) Let AB be the tree broken at a point C such that the broken part CB takes the position CO and strikes the ground at O. It is given that OA = 30 m and ∠AOC = 30º. Let AC = x and CB = y, then CO = y In ∆OAC, we have tan 30º = 1 ⇒ = 3 ⇒ x = Again in ∆OAC, we have cos 30º = AC OA B x 30 y 30 = 10 3 3 y OA OC ⇒ x 30º 30 m O 30 3 = y 2 60 = 20 3 y = 3 ⇒ 1 C A ∴ 1 Height of the tree = (x + y) = 10 3 + 20 3 = 30 3 = 30 × 1·732 = 51.96 m (ii) Trigonometric ratios of an acute angle of a right angled triangle. (iii) The problem of decreasing ratio of trees and land is discussed here. ½ 1 SECTION D 5. ⇒ ⇒ Now, 15 tan2 θ + 4 sec2 θ 15 tan2 θ + 4(tan2 θ + 1) 15 tan2 θ + 4 tan2 θ + 4 19 tan2 θ tan θ θ (sec θ + cosec θ)2 – sin2 θ = = = = = = = 23 23 23 19 1 = tan 45º 45º (sec 45º + cosec 45º)2 – sin2 45º e 2 + 2 j − FGH 12 IJK 2 1 = e2 2 j − 2 2 = = 8− 1 1 2 1 1 15 = 2 2 1 SUMMATIVE ASSESSMENT WORKSHEET-61 SECTION A 1. Given : From Fig. C a sin θ = b AB = tan θ = 2. P-82 a b2 − a 2 AC = AB a b2 − a 2 b · θ A cos2 x + sin2 x = 1 M A T H E M A T I C S -- X b2 − a2 1 B 1 T E R M – 1 SECTION B 5 cosec θ = 7 3. Given : ⇒ cosec θ = 7 5 ⇒ sin θ = 5 7 1 Q cos ec θ = sin θ 1 sin θ + cos2 θ – 1 = sin θ – (1 – cos2 θ) = sin θ – sin2 θ = FG IJ H K 5 5 − 7 7 2 = 35 – 25 10 = 49 49 1 SECTION C cos θ + sin θ = 4. 2 cos θ ⇒ sin θ = cos θ ( 2 – 1) ⇒ sin θ = ⇒ sin θ = cos q ( 2 - 1) ( 2 + 1) 1 ( 2 + 1) cos θ(2 − 1) 2 +1 ( 2 + 1) sin θ = cos θ ⇒ ⇒ 1 2 sin q + sin θ = cos θ cos θ – sin θ = 2 sin q . Proved. 1 SECTION D 5. sin A = ∴ cos A = sin B = ∴ Now cos B = = cos (A + B) = S O L U T I O N S 5 1 − sin 2 A , cos A = 2 F 1 I 1−G H 5 JK 1 10 1− = IJ 10 K 1 2 1 = 5 5 1 1 − sin 2 B , cos B = FG H 1− 2 = 1 = 10 1− 3 1 10 cos ( A + B) = cos Acos B – sin Asin B = ∴ 1 2 5 × 6 50 1 2 A + B = 45º. − 3 10 – 1 50 1 5 = × 5 50 1 10 = 5 2 2 = 1 2 1 = cos 45º 1 P-83 SUMMATIVE ASSESSMENT WORKSHEET-62 SECTION A 1. Q sin θ = cos θ ⇒ tan θ = 1 ⇒ θ = 45° C 1 cos θ = Also 2 2 tan θ + cos2 θ = 2(1) + Now, =2+ FG 1 IJ H 2K 2 2 1 1 5 = · 2 2 θ A 1 B 1 cosec θ = 2 2. 1 = sin 30º 2 θ = 30º ⇒ sin θ = ⇒ Now ⇒ cot θ = 3p cot 30º = 3p 3p ⇒ ⇒ 3 = p = 1. 1 SECTION B 3. sec2 (90º – q ) – cot 2 q 2(sin 2 25º +sin 2 65º ) – 2cos2 60º tan 2 28º tan 2 62º 3(sec 2 43º – cot2 47º ) 2 2 = (cosec q – cot q ) – 2(sin 2 25º + cos2 25º ) 1 1 2× × tan 2 28º×cot2 28º 2 2 3[sec2 43º – tan 2 43º ] 1 1 × tan 2 28º× 1 2 tan 2 28º = – 2 × (1) 3 = 1 ½ 1 1 1 – = 2 6 3 ½ SECTION C 4. LHS = æ cosec A+cot A ö 1 1 1 ç = ´ç ÷÷ – cosec A cosec A–cot A sin A cosec A–cot A è cosec A+cot A ø Now RHS = 1 1 − sin A cosec A + cot A = cos ec A + cot A – cosec A cos ec 2 A – cot 2 A = cosec A + cot A – cosec A = cot A 1 P-84 FG H ½ 1 cosec A – cot A × cosec A + cot A cos ec A – cot A (cosec A–cot A) = cosec A – cosec 2 A - cot 2 A = cosec A – = cosec A – ∴ 1 LHS = RHS (cosec A - cot A) = cot A 1 M A T H E M A T I C S -- X IJ K 1 ½ Proved. T E R M – 1 SECTION D 5. 2 sin (3x – 15°) = 3 3 2 sin (3x – 15)° = sin 60° 3x – 15 = 60° 3x = 60 + 15 = 75° sin (3x – 15)° = ⇒ ⇒ ⇒ Now 1 75 = 25° 3 sin2 (2x + 10)° + tan2 (x + 5)° = sin2 (50 + 10)° + tan2 (25 + 5)° = sin2 60° + tan2 30° x = 2 3 1 + = 2 3 = 3 1 + 4 3 = 9+7 13 · = 12 12 1 2 1 1 SUMMATIVE ASSESSMENT WORKSHEET-63 SECTION A sec θ + tan θ = 7 1. Given : ⇒ (sec θ + tan θ)(sec θ − tan θ) =7 (sec θ − tan θ) ⇒ sec 2 θ − tan 2 θ =7 sec θ − tan θ ⇒ 1 =7 sec θ − tan θ ⇒ sec θ – tan θ = 1 − sec 2 A 2. cosec 2 A − 1 = = 1 · 7 1 1 − (1 + tan 2 A) 1 + cot 2 A − 1 − tan 2 A cot 2 A = – tan 2 A 1 / tan 2 A = – tan4 A 1 SECTION B 3. Given : ⇒ ⇒ Hence, S O L U T I O N S 2 sin 2θ = 3 3 = sin 60º 2 2θ = 60º sin 2θ = cos 2θ = cos 60º = 1 · 2 1 1 P-85 SECTION C 4. (i) Let A be the kite and CA be the string attched to the kite such that its one end is tied to a point C on the ground. The inclination of the string CA with the ground is 60º. In ∆ABC, we are given that ∠C = 60º and perpendicular AB = 60 m. AB ∴ sin C = AC AB ⇒ sin 60º = AC 60 3 ⇒ = AC 2 120 ⇒ AC = = 40 3 m 3 C A 60 m 60º B Hence, the length of the string is 40 3 m. (ii) Trigonometric ratios of an acute angle of a right angled triangle. (iii) Playing makes children’s mind and body healthy. 2 ½ ½ SECTION D 5. Consider an equilateral triangle of sides ‘a’ units A 30° a a 60° 60° B ∴ BD = CD = As ∴ D a C a · . Also ∠BAD = ∠CAD = 30° 2 ∠A = ∠B = ∠C = 60°. In the right ∆ADB, ∠ADB = 90° AD2 = AB2 – BD2 (By Pythagoras Theorem) ⇒ AD2 = a2 – a2 3a2 = 4 4 3 a 2 BD tan 30° = = AB 1 1 AD = a/2 3a / 2 = 1 3 · SUMMATIVE ASSESSMENT 1 WORKSHEET-64 SECTION A 1. The maximum value of sin θ is 1. 2. 1 tan θ = 7 8 1 − sin 2 θ (1 + sin θ)(1 − sin θ) 1 cos 2 θ = = = cot2 θ = 2 2 (1 + cos θ)(1 − cos θ) tan 2 θ 1 − cos θ sin θ 1 64 = = · 2 49 (7 / 8) P-86 M A T H E M A T I C S -- X T E R M – 1 SECTION B 3. L.H.S. = – 1 + sin A sin (90º − A) cot (90 º − A) sin A cos A tan A ½ = – 1 + sin A cos A × cot A ½ cos A sin A ½ = – 1+ = – 1 + sin Acos A × = – 1 + cos2 A = – (1 – cos2 A) ½ = – sin2 A = R.H.S. SECTION C 4. Let Q ⇒ Q ∴ ⇒ ⇒ Hence, Now AB AC – AB AC AC2 (x + 1)2 x2 + 2x + 1 = = = = = = x 1 x+1 AB2 + BC2 x2 + (5)2 x2 + 25 24 = 12 2 AB = 12, AC = 13 A x x+1 2x = 24 ⇒ x = sin C = AB 12 = AC 13 cos C = BC 5 = AC 13 12 25 1+ 1 + sin C 13 = 13 = 25 · = 5 18 18 1 + cos C 1+ 13 13 B 5 cm C 1 1 1 SECTION D 5. tan θ + sin θ tan θ − sin θ sin q + sin q cos q = sin q - sin q cos q æ 1 ö sin q çç + 1÷÷ è cos q ø æ 1 ö = sin q çç –1÷÷ è cos q ø L.H.S. = sec q + 1 = sec q - 1 = R.H.S. S O L U T I O N S 1½ 1½ Proved. 1 P-87 SUMMATIVE ASSESSMENT WORKSHEET-65 SECTION A 5 tan θ = 4 1. Given : Now 5 sin θ − 3 cos θ = 5 sin θ + 3 cos θ = 2. Given : ∴ ⇒ ∴ 4−3 1 1 = = · 4+3 4+3 7 1 3 = tan θ x 3x = sec θ, and (3x)2 + FG sin θ IJ − 3 H cos θ K = 5 tan θ − 3 F sin θ IJ + 3 5 tan θ + 3 5G H cos θ K (Divide Numerator & Denominato by cos θ) 5 FG 3 IJ H xK 2 = sec2 θ – tan2 θ 1 9 x2 − 2 = 1 x x2 – 1 x = 2 1 9 1 SECTION B 3. R.H.S. = = = p2 - 1 p2 +1 = (cosec q + cot q)2 –1 (cosec q + cot q) 2 + 1 cosec2 q + cot 2 q + 2cosec q.cot q –1 cosec2 q + cot 2 q + 2cosec q.cot q + 1 1 + cot 2 q + cot 2 q + 2 cosec q cot q - 1 1 cosec 2 q + cosec2 q - 1 + 2 cosec q cot q + 1 2 cot q (cot q + cosec q) = 2 cosec q (cosec q + cot q) = cos θ × sin θ = cos θ = LHS. sin θ Proved 1 SECTION C 4. L.H.S. = = P-88 cos A sin A + 1 – tan A 1 − cot A cos A sin A + sin A cos A 1− 1− cos A sin A FG H IJ K FG H IJ K = cos 2 A sin 2 A + cos A − sin A sin A − cos A = cos 2 A sin 2 A – cos A − sin A cos A − sin A M A T H E M A T I C S -- 1 1 X T E R M – 1 = cos 2 A − sin 2 A cos A − sin A = (cos A − sin A)(cos A + sin A) (cos A − sin A) Proved. 1 = cos A + sin A = R.H.S. SECTION D 5. L.H.S. = cosec A cosec A + cosec A–1 cosec A+1 1 cosec2 A+cosec A+cosec2 A–cosec A = (cosec A–1)(cosec A+1) = = 2cosec2 A cosec2 A–1 2cosec2 A 1 cot 2 A 2 2 sin A = 2 cos A sin 2 A = = sin 2 A ´ sin 2 A cos 2 A 2 2 cos 2 A 1 = 2 sec2 A = R.H.S. Proved. 1 SUMMATIVE ASSESSMENT WORKSHEET-66 SECTION A 1. Given : tan θ = So C 5 tan θ = 12 12 5 13 12 FG IJ H K 13 12 13 sin θ = 3 13 3 = 4. θ A 5 1 B sin θ sin θ(1 − cos θ) = 1 + cos θ (1 + cos θ)(1 − cos θ) 2. = sin θ(1 − cos θ) 2 1 − cos θ = sin θ(1 − cos θ) 2 sin θ = 1 − cos θ sin θ 1. SECTION B 3. Given : ⇒ S O L U T I O N S 4 cos θ = 11sin θ cos θ = 11 sin θ 4 P-89 11 sin q - 7 sin q 4 11 cos θ − 7 sin θ = 11 11 cos θ + 7 sin θ 11´ sin q + 7 sin q 4 11´ Now FG 121 − 7IJ H4 K = F 121 + 7IJ sin θG H4 K 1 sin θ = 121 – 28 93 = · 121 + 28 149 SECTION C sec θ + tan θ = λ 4. Let ...(1) We know that sec2 θ – tan2 θ = 1 ⇒ (sec θ + tan θ) (sec θ – tan θ) = 1 ⇒ λ(sec θ – tan θ) = 1 ⇒ sec θ – tan θ = Adding eqns. (1) and (2), we get 1 1 λ ...(2) 1 λ 1 =λ+ λ 2sec θ = λ + FG H IJ K 1 4x 1 1 ⇒ 2x + =λ+ 2x λ Comparing both sides, we get ⇒ 2 x+ 1 λ = 2x or λ = ⇒ 1 2x 1 · 2x sec θ + tan θ = 2x or 1 SECTION D cosec θ = 5. Given : (i) cos θ = 2 2/ 5 1/ 5 =2– 1 − 5 sin2 θ + cos2 θ 1½ 5 F 1 IJ + FG 2 IJ = G H 5K H 5K 2 P-90 1 4 = 5 5 5 cos θ cot θ – cosec θ = sin θ − cosec θ = (ii) 5 cos2 θ = 1 – sin2 θ = 1 – So, ∴ 1 5 Þ sin θ = 2 = 1 4 + = 1. 5 5 M A T H E M A T I C S -- 1½ X T E R M – 1 SUMMATIVE ASSESSMENT WORKSHEET-67 SECTION A 2 tan 30º 1. 1 + tan 2 30º = = 2. tan FG A + BIJ H 2 K = = = 1 2 3 2 2 3 3 = = 2 1 4 1 1+ 1+ 3 3 3 2 3 × = 3 3 4 2 sin 60º. æ Cö tan ç ç90º – ÷÷ 2ø è C cot · 2 1 LMQ A + B + C = 90ºOP N 2 2 2 Q 1 SECTION B 3. In the ∆ABP, sin 30º = 1 50 = ⇒ AP = 100 cm 2 AP ⇒ In the ∆ AQD, sin 30º = AD AQ 20 1 ⇒ AQ = 40 cm = AQ 2 ⇒ Now, AB AP ½ ½ ½ the length of (AP + AQ) = 100 + 40 = 140 cm. SECTION C 4. cos2 (45º + q) + cos2 (45º – q) + cosec (75º + θ) – sec (15º – θ) tan (60º + q) tan (30º – q ) = cos2 (45º + q) + sin 2 (90º – 45º + q ) + cosec (75º + θ) – cosec (90º – 15º + θ) tan (60º + q)cot (90º – 30º + q ) 1 = cos2 (45º + q )+ sin 2 (45º + q ) + cosec (75º + θ) – cosec (75º + θ) tan (60º + q).cot (60º + q ) 1 = 1 = 1. 1 1 SECTION D 5. L.H.S. = (1 + cot A – cosec A) (1 + tan A + sec A) FG cos A − 1 IJ FG1 + sin A + 1 IJ H sin A sin A K H cos A cos A K F sin A + cos A − 1 IJ FG sin A + cos A + 1 IJ = GH K H cos A K sin A = 1+ S O L U T I O N S 1 P-91 = (sin A + cos A) 2 − 12 sin A cos A 1 = sin 2 A + cos 2 A + 2 sin A cos A – 1 sin A cos A 1 1 + 2 sin A cos A – 1 sin A cos A = 2 = R.H.S. = 1 SUMMATIVE ASSESSMENT WORKSHEET-68 SECTION A 1. ⇒ ⇒ sin (x –20)º = = x – 20 = 4x = ⇒ x = tan θ = 2. h= = cos (3x –10)º sin [90º – (3x –10)º] 90 – 3x + 10 90 + 10 + 20 = 120 120 = 30. 4 6 h = 4 28 6 × 28 θ 4 A 42. C C 6 4 B 1 h θ A 28 B 1 SECTION B L.H.S. = (cosec θ – cot θ)2 3. ⇒ cos θ 1 − sin θ sin θ ⇒ 1 − cos θ sin θ 2 2 (1 − cos θ)2 = 1 − cos2 θ (1 − cos θ)2 (1 − cos θ)(1 + cos θ) 1 − cos θ = R.H.S. 1 + cos θ = = SECTION C a2cos2 θ 4. We have = + 2absin θ cos θ + b2sin2 θ and n2 = a2sin2 θ – 2absin θ cos θ + b2cos2 θ Adding (i) and (ii), we get m2 + n2 = a2(cos2 θ + sin2 θ) + b2(cos2 θ + sin2 θ) = a2 (1) + b2 (1) = a2 + b2 = RHS. m2 ...(i) 1 ...(ii) 1 Proved. 1 SECTION D 5. L.H.S. = tan θ cot θ + 1 − cot θ 1 − tan θ 1 tanq tan q + = 1 1- tanq 1tan q P-92 M A T H E M A T I C S -- X T E R M – 1 = tan 2 q 1 + tan q - 1 tan q (1- tan q) = tan 3 q - 1 (tan q - 1) tan q 1½ 1 (tan q - 1)(tan 2 q + tan q + 1) tan 2 q + tan q + 1 = (tan q - 1)(tan q) tan q = tan θ + 1 + cot θ = R.H.S. 1 = SUMMATIVE ASSESSMENT ½ WORKSHEET-69 SECTION A 1. tan A = Now cosec2 A –1 = = 8 15 1 sin 2 A cos 2 A sin 2 A 1 –1= 1 − sin 2 A sin 2 A = cot2 A 1 225 = tan A (8 / 15) 2 64 tan x = sin 45º cos 45º + sin 30º = 2. = 2 = 1 FG 1 IJ FG 1 IJ + 1 H 2 KH 2 K 2 1 1 + = 1 = tan 45º 2 2 x = 45º. = ⇒ 1 SECTION B ∠C = 90º (Angle in a semi-circle) 3. ∴ ∴ AB = (3) 2 + (2) 2 = 9 + 4 = 13 tan A = BC 2 = AC 3 tan B = AC 3 = BC 2 tan A tan B = ½ ½ ½ 2 3 . = 1. 3 2 √13 cm ½ SECTION C 4. cosec θ = 13 12 12 13 cos2 θ = 1 – sin2 θ sin θ = 12 = 1– 13 S O L U T I O N S 2 1 P-93 169 − 144 25 = 169 169 5 cos θ = 13 12 5 2× − 3× 13 13 2 sin θ − 3 cos θ = 12 5 4 sin θ − 9 cos θ 4× − 9× 13 13 24 − 15 9 = = = 3. 48 − 45 3 = ⇒ Now 1 1 SECTION D 5. tan θ + sec θ − 1 tan θ − sec θ + 1 tan q + sec q - (sec 2 q - tan 2 q) = [Q 1 = sec2 θ – tan2 θ] tan q - sec q + 1 (tan θ + sec θ) − [(sec θ + tan θ) (sec θ − tan θ)] 1 = tan θ − sec θ + 1 L.H.S. = [1 − (sec θ − tan θ)] tan θ − sec θ + 1 [1 − sec θ + tan θ ] = (tan θ + sec θ) [1 − sec θ + tan θ ] = (tan θ + sec θ) = sin θ 1 + cos θ cos θ = 1 + sin θ = R.H.S. cos θ 1 1 Proved. 1 SUMMATIVE ASSESSMENT WORKSHEET-70 SECTION A 1 1. Maximum value of sec θ , i.e., cos θ = 1 1 SECTION B 2. cos 45° 1 + = sec 30° sec 60° = = = 1 2 +1 2 2 3 1 2 × 3 1 + 2 2 6 1 + 4 2 1 6 +2 · 4 SECTION C 3. P-94 L.H.S. = sin θ − cos θ sin θ + cos θ + sin θ + cos θ sin θ − cos θ M A T H E M A T I C S -- X T E R M – 1 = = = (sin θ − cos θ) 2 + (sin θ + cos θ) 2 sin 2 θ − cos 2 θ (sin 2 θ + cos 2 θ) – 2 sin θ cos θ + (sin 2 θ + cos 2 θ) + 2 sin θ cos θ 1+1 1 sin θ − 1 + sin 2 θ 2 = = R.H.S. 2 2 sin θ − 1 2 sec 41º .sin 49º + cos 29º .cos ec 61º − 4. 1 sin 2 θ − (1 − sin 2 θ) 2 3 Proved. 1 (tan 20º .tan 60º .tan 70º) 3(sin 2 31 º + sin 2 59º ) 2 [tan 20º. 3 cot (90º– 70º)] 3 3[sin 2 31º + cos 2 (90º –59º )] cosec (90º– 41º)sin 49º + cos 29º.sec (90º– 61º) = 2 [tan 20º 3.cot 20º ] 3 3(sin 2 31º + cos 2 31º ) 1 cosec 49º.sin 49º + cos 29º.sec 29º = = 1 1+1− 2 2−2 = =0 3 3 1 SECTION D 5. L.H.S. = = = = = = 2 θ– θ – 2 cosec2 θ + cosec4 θ 2 sec2 θ – (sec2 θ)2 – 2 cosec2 θ + (cosec2 θ)2 2 (1 + tan2 θ) – (1 + tan2 θ)2 – 2(1 + cot2 θ) + (1 + cot2 θ)2 2 + 2 tan2 θ – 1 – 2 tan2 θ – tan4 θ – 2 – 2 cot2 θ + 1 + 2 cot2 θ + cot4 θ cot4 θ – tan4 θ R.H.S. sec2 sec4 SUMMATIVE ASSESSMENT 1 1 1 1 WORKSHEET-71 SECTION A 1. AB = (AC) 2 − (BC) 2 = (17) 2 − (8) 2 = 289 − 64 = 225 = 15 15sec A + 8cot A = 15 2. FG 17 IJ H 15 K +8 C 17 8 FG 15 IJ H 8K = 17 + 15 = 32. 1 2 sin A = tan2 45º 2 2 1 1 = × (1)2 = 2 2 1 sin A = = sin 45º 2 A B 15 A 1 FG IJ H K ⇒ ⇒ S O L U T I O N S A = 45º 1 P-95 SECTION B 3. cos (A – B) = 3 = cos 30º ⇒ A – B = 30º 2 ...(1) ½ sin (A + B) = 3 = sin 60º ⇒ A + B = 60º 2 ...(2) ½ 2A = 90º ⇒ A = 45º Adding equations (1) and (2), From (2), ½ ½ B = 60º – A = 60º – 45º = 15º SECTION C 4. we know that, sec (90º – θ) = cosec θ, tan (90º – θ) = cot θ, cot (90º – θ) = tan θ, cosec (90º – θ) = sec θ 1 sin q.sec (90º – q ) tan q tan (90º– q ) sin θ.cosec θ.tan θ cot θ − Hence, cosec (90° – q) cos q.cot (90° – q )– = cot q sec θ.cos θ.tan θ cot θ 1 = 1 × tan θ sin θ −1 = 1 – 1 = 0 × cos θ.tan θ sin θ × 1 cos θ 1 SECTION D 5. sin θ = ∴ ⇒ ⇒ 3 3 7 ⇒ cos θ = and tan θ = 7 4 4 cosec 2 q-cot 2 q sec2 q -1 1 2 tan q +2 cot q = + 2´ ½+½ 7 + cos q x 7 7 7 + = 3 x 4 1 1 2 7 7 7 + + = tan q 3 x 4 ⇒ 7 2 7 7 7 + = 3 3 4 x ⇒ 7 4 7- 7 = x 4 1 4 7 3 7 = ⇒x= · 3 x 4 ⇒ SUMMATIVE ASSESSMENT 1 WORKSHEET-72 SECTION A 1. cos2 17º– sin2 73º = cos2 17º – sin2 ( 90 – 17)º = cos2 17º – cos2 17º 1 = 0. 2. P-96 A = 30º, sin 2A = sin 2 (30º) = sin 60º = 3 · 2 M A T H E M A T I C S -- 1 X T E R M – 1 SECTION B 2 2 2 1 2 2 + 3 − 2(1) 2 cos2 60° + 3 sec 2 30° − 2 tan 2 45° 2 3 = 2 2 sin 2 30° + cos2 45° 1 1 + 2 2 3. 1 2 +4−2 4 = 1 1 + 4 2 = 10 · 3 1 SECTION C 1 = sin 30º 2 A + B – C = 30º 4. We have sin (A + B – C ) = ∴ ...(1) 1 1 = cos 45º 2 ∴ B + C – A = 45º Adding eqs. (1) and (2), we get 2B = 75º ⇒ B = 37.5º Now subtracting eqn. (2) from eqn. (1), we get 2(A – C) = – 15º ⇒ A – C = – 7·5º We know that, A + B + C = 180º A + C = 142·5º Adding eqns. (3) and (4), we get 2A = 135º A = 67·5º ⇒ C = 75º Hence, ∠A = 67·5º, ∠B = 37·5º, ∠C = 75º. and cos ( B + C – A ) = 5. sec A = sin A = L.H.S. = ...(2) 1 ...(3) 1 ...(4) 1 17 8 ⇒ cos A = 8 17 1 − cos2 A = 8 1− 17 2 = 15 17 1 3 − 4 sin2 A 4 cos2 A – 2 225 3 − 4 289 = 64 4 −3 289 = 867 − 900 256 − 867 1 − 33 33 · = − 611 = 611 S O L U T I O N S P-97 R.H.S. = 3 − tan 2 A 1 − 3 tan 2 A 2 15 3− 8 = 2 15 1 − 3 8 1 192 − 225 33 = 64 − 675 611 L.H.S. = R.H.S. = ∴ SUMMATIVE ASSESSMENT 1 WORKSHEET-73 SECTION A 1. cos ( A + B) = cos (180º – C) = sin (45º + θ) – cos (45º – θ) = = = 2. 1 cos C = cos 90º = 0. sin [90º – (45º + θ)] – cos (45º – θ) cos (45º – θ) – cos (45º – θ) 0. 1 SECTION B 3. 3 tan θ = 1 tan θ = ⇒ ∴ sin2 θ– cos2 1 3 1 = tan 30° θ = 30° θ = sin2 30° – cos2 30° 2 1 3 = − 2 2 = 2 1 3 2 1 − =– =– · 4 4 4 2 1 SECTION C 4. Given : ⇒ and xsin θ = y cos θ ycos θ x = sin θ x sin3 θ + ycos3 θ = sin θcos θ ...(1) 1 ...(2) Eliminating x from (1) and (2), we get y cos q 3 3 sin q . sin θ + ycos θ = sin θcos θ ⇒ y cos θ sin2 θ + ycos3 θ = sin θcos θ y cos θ [sin2 θ + cos2 θ] = sin θ cos θ ⇒ P-98 y = sin θ M A T H E M A T I C S -- ...(3) 1 X T E R M – 1 Substituting this value of y in (3), we get x = cos θ ...(4) 1 ∴ Squaring and adding (3) and (4), we get x2 + y2 = cos2 θ + sin2 θ = 1. Proved. SECTION D 5. L.H.S. = cos 2 θ sin 3 θ + 1 − tan θ sin θ − cos θ cos 2 θ sin 3 θ + sin θ sin θ − cos θ 1− cos θ cos 3 θ sin 3 θ – = cos θ − sin θ cos θ − sin θ 1 = = cos 3 θ − sin 3 θ cos θ − sin θ = (cos θ − sin θ)(cos 2 θ + sin 2 θ + sin θ cos θ) (cos θ − sin θ) = 1 + sin θ cos θ = R.H.S. SUMMATIVE ASSESSMENT 1 1 Proved. 1 WORKSHEET-74 SECTION A tan θ + cot θ Squaring on both sides, tan 2 θ + cot2 θ + 2tan θ cot θ ⇒ tan2 θ + cot2 θ 2. tan 3A ⇒ cot (90º – 3A) ⇒ 90º – 3A 1. ⇒ =2 = = = = = 4 4 – 2 = 2, as tan θ cot θ = 1. cot (A – 26°) cot (A – 26º) A – 26º 1 4A = 90º + 26º = 116º ⇒ Α= 116º = 29º. 4 1 SECTION C 4. cos 50º = cos (90° – 40)º = sin 40º cosec2 59º = cosec2 (90º – 31º) = sec2 31º 1 tan 78º = tan (90° – 12º) = cot 12º Hence, cos 50º 4(cosec 2 59º - tan 2 31º ) 2 + - tan 12º tan 78º. sin 90º 2sin 40º 3 3 tan 2 45º S O L U T I O N S 1 = sin 40º 4(sec 2 31º– tan 2 31º ) 2 + − tan 12º cot 12º × 1 2 sin 40º 3 3 × (1) 2 = 1 4 2 7 + − = 2 3 3 6 1 P-99 SECTION D 5. Let cot θ = x, 3 cot2 θ – 4cot θ + 3 or (x – x2 3 = 0 becomes – 4x + 1 3 =0 3 ) ( 3 x – 1) = 0 ∴ x = ⇒ cot θ = ∴ 3 or 1 1 3 3 or cot θ = 1 3 θ = 30º or θ = 60º If θ = 30º, then cot2 30º + tan2 30º = ( 3 ) 2 + If θ = 60º, then cot2 60º + tan2 F 1 IJ 60º = G H 3K 2 FG 1 IJ H 3K 2 =3+ + ( 3) 2 = 1 10 = 3 3 1 10 1 +3= 3 3 SUMMATIVE ASSESSMENT 1 WORKSHEET-75 SECTION A 1. ⇒ ⇒ cos 2θ = sin 4θ sin (90º – 2θ) = sin 4θ 90º – 2θ = 4θ ⇒ 6θ = 90º 90º = 15º. 6 tan x = sin 45º cos 45º + cos 60º 1 1 1 + = 2 2 2 ⇒ θ= 2. 1 FG IJ FG IJ H KH K 1 1 + = 1 = tan 45º 2 2 x = 45º. = ⇒ 1 SECTION B 3. cos 68º + tan 76º = cos (90º –22º) + tan (90º – 14º) 1 = sin 22º + cot 14º, [Q cos (90º – θ) = sin θ and tan (90º – θ) = cot θ ] 1 SECTION C 4. Given : cos θ + sin θ = p and sec θ + cosec θ = q ∴ L.H.S. = q(p2 – 1) = (sec θ + cosec θ) [(cos θ + sin θ)2 – 1] = (sec θ + cosec θ) (1 + 2 sin θ cos θ –1) = ½ FG 1 + 1 IJ (2 sinθ cos θ) H cos θ sin θ K 1 sin θ + cos θ × 2 sin θ cos θ cos θ sin θ = 2(sin θ +cos θ) = 2p = R.H.S. = P-100 M A T H E M A T I C S -- 1 Proved. ½ X T E R M – 1 SECTION D x2 = r2 sin2 A cos2 C 5. Since, y2 = r2 sin2 A sin2 C z2 = r2 cos2 A x2 = cos2 = r2 sin2 (cos2 C = r2 sin2 A = r2 (sin2 A = r 2. Proved. 1 SUMMATIVE ASSESSMENT WORKSHEET-76 + z2 1 r2 sin2 A + y2 A + C+ r2 sin2 A sin2 C) + sin2 + C+ r2 cos2 A 1 r2 cos2 A r2cos2 A + 1 cos2 A) SECTION A 1. Q 2. sin 20° = sin (90° – 70°) = cos 70° 3 sin2 20° – 2 tan2 45° + 3 sin2 70° = 3 cos2 70° + sin2 70°) – 2 × (1)2 = 3×1–2=1 2 2 (1 + tan θ) cos θ = sec2 θ cos2 θ = 1 cos2 θ = cos2 θ = 1. 1 1 SECTION B ⇒ ⇒ ⇒ sin (36 +θ)º = cos (16 + θ)º cos [90º –(36 + θ)º] = cos (16 + θ)º 90 – 36 – θ = 16 + θ 2θ = 90 – 36 – 16 = 38 ⇒ θ= 3. 1 38 = 19. 2 SECTION C 4. Given : (sec A + tan A) (sec B + tan B) (sec C + tan C) = (sec A – tan A) (sec B – tan B) (sec C – tan C) Multiply both the sides by (sec A – tan A) (sec B –tan B) (sec C – tan C) (sec A + tan A) (sec B + tan B) (sec C + tan C ) × (sec A – tan A) (sec B – tan B) (sec C – tan C) = (sec A – tan A)2 (sec B – tan B)2 (sec C –tan C)2 1 2 2 2 2 2 2 ⇒ (sec A – tan A) (sec B – tan B) (sec C – tan C) = (sec A – tan A)2 (sec B – tan B)2 (sec C – tan C)2 ⇒ 1 = [ (sec A – tan A) (sec B – tan B) (sec C – tan C)]2 ⇒ (sec A – tan A) (sec B – tan B) (sec C – tan C) = ± 1 1 Similarly, multiply both sides by (sec A + tan A) (sec B + tan B) (sec C + tan C), we get (sec A + tan A) (sec B +tan B) (sec C + tan C) = ± 1. Proved. 1 5. Given expression = S O L U T I O N S tan q.cos q cot (90º – 50º ) + – [cos2 20º + cos2 (90º – 20º)] sin q tan 50º 1 sin q cos q tan 50º = cos q . sin q + tan 50º – [cos2 20º + sin2 20º] 1 = 1 + 1 – 1 = 1. 1 P-101 SECTION D cos 65º cos 65º cos 65º = sin (90º -65º ) = cos 65º sin 25º tan(90º–70º ) cot 70º tan 20º = = cot 70º cot 70º cot 70º sin 90º tan 5º tan 35º tan 60º tan 55º tan85º 6. 1 =1 =1 =1 = tan (90º – 85º) tan (90º – 55º) tan 55º tan 60º.tan 85º. = cot 85º.tan 85º.cot 55ºtan 55º. 3= 3 Given expression = 1 – 1 – 1 + 3 = 1 3 1 = 1×1× ∴ 3 – 1. FORMATIVE ASSESSMENT WORKSHEET-77 Objective Type Questions 1. (C) 2. (B) 3. (A) 4. (D) 5. (A) 6. (C) 7. (C) Fill in the blanks 1. (I) 25° (VI) 50° (II) 65 ° (VII) 1° (III) 59° (VIII) 10° (IV) 51° (IX) 23° (V) 55° (X) 53° Error’s Correction 2. (I) sin 2 20º + sin 2 70º cos 2 20º + cos 2 70 º = = 2 (II) 2 sin 20º + sin 70º cos 2 20º + cos 2 70 º (III) Correct (No Error) (IV) sin 2 20º + sin 2 70º = sin 2 (90º −70º ) + sin 2 70º cos 2 (90º −70º ) + cos 2 70º cos 2 70º + sin 2 70º 2 2 sin 70 º + cos 70º = 1 =1 1 sin 2 (90º −70º ) + sin 2 70º cos 2 (90º −70º ) + cos 2 70º cos 2 70º + sin 2 70º 1 = = =1 2 2 1 sin 70 º + cos 70º = sin 2 (90º −70º ) + sin 2 70º cos 2 (90º −70º ) + cos 2 70º 1 = =1 2 2 1 sin 70 º + cos 70º (V) Correct (No error) cos 2 20º + cos 2 70 º cos 2 70º + sin 2 70º A Answers 5 1. sin C = 13 12 cm 5 cm B 2. ⇒ ⇒ sin A = sin A′ 2 B' C' = 5 20 2 × 20 B'C' = 5 =8 13 cm C 5 A C' 20 2 B C A' B' 3. TRUE / FALSE (I) F, (II) F, (III) T, (IV) F, (V) T, (VI) F. ■ P-102 M A T H E M A T I C S -- X T E R M – 1 CHAPTER 6 Statistics SUMMATIVE ASSESSMENT WORKSHEET - 78 SECTION A 10 + 25 35 = = 17·5. 1 2 2 2. The abscissa of the point of intersection of the ‘‘less than type’’ and ‘‘more than type’’ cumulative frequency curve of a grouped data is median. 1 1. Class mark of the class 10 – 25 = SECTION B 3. Marks No. of students c.f. 0 – 10 5 5 10 – 20 15 20 20 – 30 30 50 30 – 40 8 58 40 – 50 2 60 N = 60 Here So, median class = 20 – 30 N 60 = = 30 2 2 l = 20, f = 30, c.f. = 20, h = 10 æN ö ç - c.f. ÷ ç2 ÷ Median = l + ç ÷ ´ h f ç ÷÷ ç è ø 1 æ 30 - 20 ö ÷÷ ´ 10 = 20 + ç ç è 30 ø 100 = 20 + 30 = 20 + S O L U T I O N S 10 = 20 + 3.33 = 23.33. 3 1 P-103 SECTION C 4. Class marks (xi) fi fixi 27 4 108 32 14 448 37 22 814 42 16 672 47 6 282 52 5 260 57 3 171 Σf = 70 Σfx = 2755 2 å fi xi Mean = å f i ∴ = ½ 2755 = 39·36. 70 ½ SECTION D 5. Weight (in Kg) Cumulative Frequency More than or equal to 0 120 More than or equal to 10 106 More than or equal to 20 89 More than or equal to 30 67 More than or equal to 40 41 More than or equal to 50 18 Plotting the points 2 y (0, 120) 120 110 Scale x-axis 2 cm = 10 units y-axis 1 cm = 10 units (10, 106) 100 90 (20, 89) Cumulative frequency 80 More than ogive 70 (30, 67) 60 50 (40, 41) 40 2 30 20 (50, 18) 10 0 P-104 10 20 30 40 50 Lower limits 60 x M A T H E M A T I C S -- X T E R M – 1 SUMMATIVE ASSESSMENT WORKSHEET-79 SECTION A 1. The mean of observations x1 , x2 , ......, xn = x then the mean of x1 + a, x2 + a ...... xn + a = x + a. 1 SECTION B 2. Class Interval Frequency 0 – 50 8 50 – 100 15 100 – 150 32 150 – 200 26 200 – 250 12 250 – 300 7 Total 100 2 SECTION C 3. Modal class : 30 – 40, Here l = 30, f1 = 45, f2 = 12, f0 = 30, h = 10 f1 − f0 Mode = l + 2 f − f − f × h 0 2 1 1 45 − 30 = 30 + × 10 90 − 30 − 12 = 30 + 3·125 = 33·125 1 1 SECTION D 4. Class f c.f 0 – 50 2 2 25 50 50 – 100 3 5 75 225 100 – 150 5 10 125 625 150 – 200 6 16 175 1050 200 – 250 5 21 225 1125 250 – 300 3 24 275 825 300 – 350 1 25 325 325 Total Σf = 25 ∴ Mean = x fx Σfx = 4225 2 Σfx 4225 = = 169 Σf 25 f1 − f0 Mode = l + 2 f − f − f × h 1 0 2 1 From table modal class = 150 – 200 so f1 = 6, f0 = 5, f2 = 5, l = 150, h = 50 S O L U T I O N S P-105 So Mode = 150 + (6 − 5) × 50 12 − 5 − 5 50 2 = 150 + 25 = 175 = 150 + Now Median = = 1 1 2 mode + mean 3 3 1 2 (175) + × 169 3 3 1 = 58·33 + 112·66 = 170·83 SUMMATIVE ASSESSMENT WORKSHEET-80 SECTION A 1. Given frequency distribution = 8·1 Σ fixi = 132 + K Σ fi = 20 Σ fi xi 132 + K 8·1 = Σ f = 20 i Q ⇒ 1 K=6 SECTION B 2. Modal class : 20 – 30 Here l = 20, f1 = 40, f0 = 24, f2 = 36, h = 10 Mode = l + ½ ( f1 − f 0 ) ×h 2 f1 − f 0 − f 2 ½ = 20 + (40 – 24) × 10 80 – 24 – 36 ½ = 20 + 16 × 10 = 28 20 ½ SECTION C 3. P-106 xi fi xifi 3 10 30 9 p 9p 15 4 60 21 7 147 27 q 27q 33 4 132 39 1 39 Total Σfi = 26 + p + q Σxifi = 408 + 9p + 27q M A T H E M A T I C S -- X T E R M – 1 Σ fi = 40, Given, ⇒ ⇒ 26 + p + q = 40 p + q = 14 – ∴ Mean, x = 14·7 = ...(i) ½ Σxi f i Σf i ½ 408 + 9 p + 27q 40 1 588 = 408 + 9p + 27q 180 = 9p + 27q p + 3q = 20 Subtracting eq. (1) from eq. (2), we get 2q = 6 ⇒ q=3 Putting this value of q in eq. (1), we get p = 14 – q = 14 – 3 = 11 ...(2) ½ ½ SECTION D 4. Class Mid values xi fi fixi c.fi 25 – 35 30 7 210 7 35 – 45 40 31 1240 38 45 – 55 50 33 1650 71 55 – 65 60 17 1020 88 65 – 75 70 11 770 99 75 – 85 80 1 80 100 100 4970 Total Σ fi xi 4970 Mean x = Σ f = = 49·7 100 i 2 1 N 100 = = 50 2 2 Hence median class = 45 – 45 so, l = 45, c.f. = 38, f = 33, h = 10 From table n − c. f Median = l + 2 f ×h 50 − 38 = 45 + × 10 33 = 45 + 3·64 = 48·64. S O L U T I O N S 1 P-107 SUMMATIVE ASSESSMENT WORKSHEET-81 SECTION A 1. According to question, Mode – Mean = k (Median – Mean) k= i.e., 2. Mode – Mean Median – Mean = 3Median – 2Mean – Mean Median – Mean = 3(Median – Mean) = 3. (Median – Mean) 1 1 The median of give data is 20·5. SECTION B 3. Marks Cumulative frequency More than or equal to 0 38 More than or equal to 10 35 More than or equal to 20 27 More than or equal to 30 12 More than or equal to 40 5 2 SECTION C 4. Classes 15 15 100 – 200 17 32 200 – 300 f 32 + f 300 – 400 12 44 + f 400 – 500 9 53 + f 500 – 600 5 58 + f 600 – 700 2 60 + f ⇒ Since, ∴ Median class is 200 – 300. P-108 c.f. 0 – 100 From table, ⇒ fi n = 60 + f n 60 + f = 2 2 median = 240 1 ½ LM n − c. f .OP ×h Median = l + M 2 MN f PPQ LM 60 + f − 32 OP × 100 240 = 200 + M 2 MN f PPQ M A T H E M A T I C S -- ½ ½ X T E R M – 1 LM 60 + f − 64 OP 100 N 2f Q ⇒ 40 = ⇒ 8f = 10 f – 40 ⇒ 2f = 40 ∴ ½ f = 20. SECTION D 5. Class Interval c.f. No. of students 0 – 10 7 7 10 – 20 21 14 20 – 30 34 13 30 – 40 46 12 40 – 50 66 20 50 – 60 77 11 60 – 70 92 15 70 – 80 100 8 2 From table, maximum frequency = 20. So modal class = 40 – 50 Now l = 40, f1 = 20, f2 = 11, f0 = 12, h = 10 æ f1 - f 0 ö ÷ Mode = l + ç ç2 f - f - f ÷ ´ h è 1 0 2ø 1 æ 20 - 12 ö ç = 40 + ç ÷÷ ´ 10 è 40 - 12 - 11 ø = 40 + 8 ´ 10 17 = 40 + 80 = 40 + 4·7 = 44·7. 17 SUMMATIVE ASSESSMENT 1 WORKSHEET-82 SECTION A 1. The modal class of the distribution is 40 – 50. 1 SECTION B 2. The multiples of 5, according to the problem are : 5, 15, 25, 35, 45 Mean = = S O L U T I O N S 5 + 15 + 25 + 35 + 45 5 125 = 25. 5 ½ 1 ½ P-109 SECTION C 3. For mean, Q Class Interval xi fi f ix i 0 – 10 5 3 15 10 – 20 15 8 120 20 – 30 25 10 250 30 – 40 35 15 525 40 – 50 45 7 315 50 – 60 55 4 220 60 – 70 65 3 195 Σf = 50 Σfx = 1640 1 å fi xi 1640 Mean = å f = = 32·8 50 i ½ For mode, Modal class = 30 – 40 and l = 30, f1 = 15, f2 = 7, f0 = 10, h = 10 f1 - f 0 Mode = l + 2 f - f - f ´ h 1 0 2 = 30 + 15 - 10 ´ 10 30 - 10 - 7 = 30 + 5 ´ 10 13 = 30 + 50 13 1 = 30 + 3·85 ∴ 1 Mode = 33·85. SECTION D 4. Classes f c.f. 5 – 10 2 2 10 – 15 12 14 15 – 20 2 16 20 – 25 4 20 25 – 30 3 23 30 – 35 4 27 35 – 40 3 30 Total Since, P-110 2 Σf = 30 = N N = 15 2 M A T H E M A T I C S -- X T E R M – 1 ∴ Median class is 15 – 20 æN ç - c. f. ç2 Median = l + ç f ç ç è l = 15, N = 30, From table, Median = 15 + ö ÷ ÷ ÷ ×h ÷÷ ø c.f. = 14, f = 2, h = 5 1 FG 15 − 14 IJ × 5 H 2 K 1 = 15 + 2·5 = 17·5. SUMMATIVE ASSESSMENT WORKSHEET-83 SECTION A 1. According to formula for an even number of 2n terms. Median = Mean of nth term and (n + 1)th term 1 SECTION B 2. Age Number of Patients Less than 20 Less than 30 Less than 40 Less than 50 Less than 60 Less than 70 60 102 157 227 280 300 2 SECTION C 3. Sol. : xi fi xifi 3 10 30 9 p 9p 15 4 60 21 7 147 27 q 27q 33 4 132 39 1 39 Total Σfi = 26 + p + q Σxifi = 408 + 9p + 27q Given, ⇒ ⇒ ∴ S O L U T I O N S Σfi = 40, 26 + p + q = 40 p + q = 14 Σxi f i – Mean, x = Σf i 408 + 9 p + 27q 14.7 = 40 588 = 408 + 9p + 27q 180 = 9p + 27q p + 3q = 20 ...(1) ½ ½ 1 ...(2) P-111 Subtracting eq. (1) from eq. (2), we get 2q = 6 ⇒ q=3 Putting this value of q in eq. (1), we get p = 14 – q = 14 – 3 = 11. ½ ½ SECTION D 4. Daily income (classes) No. of workers (c.f.) less than 250 10 less than 300 15 less than 350 26 less than 400 34 less than 450 40 less than 500 50 1 y 50 45 Cumulative frequency 40 Scale x-axis 1 cm = 50 units y-axis 1 cm = 5 units 35 30 25 20 15 2 10 5 x 250 From graph, Hence, 300 350 400 450 500 Class limits N 50 = = 25 2 2 Median daily income = ` 350. SUMMATIVE ASSESSMENT 1 WORKSHEET-84 SECTION A 1. The model class is 10 – 15, than f ≥ 8. 1 SECTION B 2. According to question mode = 24·5 and mean = 29·75 The relationship connecting measures of central tendencies is : We know that 3 Median = Mode + 2 Mean 3 Median = 24·5 + 2 × 29·75 = 24·5 + 59·50 3 Median = 84·0 84 ∴ Median = = 28 3 M A T H E M A T I C S -P-112 ½ ½ 1 X T E R M – 1 SECTION C 3. xi - a h fi f iu i 20 = –2 10 25 –50 40 –40 42 0 10 =1 10 33 33 20 =2 10 10 20 å fi =150 Σfiui = – 37 Class Class marks xi ui = 20 – 30 25 – 30 – 40 35 – 40 – 50 45 = a 50 – 60 55 60 – 70 65 10 = –1 10 0=0 å fi ui Mean = a + å f ´ h i æ -37 ö ÷÷ ´ 10 = 42·5 approx. = 45 + ç ç è 150 ø 1 1 1 SECTION D 4. xi (class mark) fi fixi 0 – 100 50 12 600 100 – 200 150 16 2400 200 – 300 250 6 1500 300 – 400 350 7 2450 400 – 500 450 9 4050 Σfi = 50 Σfixi = 11000 Class Total Mean = ∴ Σxi f i 11000 = 50 = 220·00 Σf i 2 1 1 Average daily income = ` 220·00. SUMMATIVE ASSESSMENT WORKSHEET-85 SECTION A 1. Given mode – median = 24 Using formula mode = 3 median – 2 Mean difference between median and mean = a. SECTION B 2. The frequency table of the given data is as given below : xi 14 15 16 18 20 25 x fi 1 3 1 3 3 4 1 1 It is given that the mode of the given data is 25. So it must have the maximum frequency that is possible only when xi = 25 hence x = 25. 1 S O L U T I O N S P-113 SECTION C 3. Sol. Classes Frequency fi fixi Mid points xi 0 – 20 6 10 60 20 – 40 8 30 240 40 – 60 10 50 500 60 – 80 12 70 840 80 – 100 8 90 720 100 – 120 6 110 660 Σf = 50 Total Σfx = 3020 Σ fi xi 3020 – Mean, x = Σ f = = 60.4 50 i ∴ 2 1 SECTION D 4. Sol. Class Interval Frequency Cumulative frequency 0 –100 2 2 100 – 200 5 7 200 – 300 x 7+x 300 – 400 12 19 + x 400 – 500 17 36 + x 500 – 600 20 56 + x 600 – 700 y 56 + x + y 700 – 800 9 65 + x + y 800 – 900 7 72 + x + y 900 – 1000 4 76 + x + y N = 100 2 Hence, 76 + x + y = 100 ⇒ x + y = 100 – 76 = 24 Median = 525, so median class = 500 – 600 Now, ....(1) n - c. f . median = l + 2 ´h f é100 ù - (36 + x) ú ê ê 2 ú 525 = 500 + ê ú ´ 100 20 ê ú ê ë ûú 25 = (50 – 36 – x) 5 25 =5 5 x = 14 – 5 = 9 Þ Put the value of x in equation (1), we get y = 24 – 9 = 15. Þ P-114 (14 – x) = M A T H E M A T I C S -- 1 1 X T E R M – 1 SUMMATIVE ASSESSMENT WORKSHEET-86 SECTION A 1. 2. 1 The median of the data = 20·5. 2 + 3 + 5 + 7 + 11 The mean of first five prime numbers = 5 28 = = 5·6 5 1 SECTION B 3. x 3 9 15 21 27 f 7 5 10 12 6 Σf = 40 fx 21 45 150 252 162 Σfx = 630 Σ fx = 630, Σ f = 40 630 = 15·75. Mean = 40 ∴ 1 1 SECTION C 4. Class xi (class marks) fi fixi Cum. Frequency 0 – 10 5 8 40 8 10 – 20 15 16 240 24 20 – 30 25 36 900 60 30 – 40 35 34 1190 94 40 – 50 45 6 270 100 Σfi = 100 Σfixi= 2640 Total å fi xi 2640 Mean = å f = = 26.4 100 i median class : 20 – 30 ∴ Here, 1 50 − 24 × 10 36 = 20 + 7·22 = 27·22 ∴ 1 Median = 20 + 1 SECTION D 5. Class Interval Frequency Cumulative Frequency 0 – 10 10 – 20 20 – 30 30 – 40 40 – 50 50 – 60 5 f1 20 15 f2 5 5 5 + f1 25 + f1 40 + f1 40 + f1 + f2 45 + f1 + f2 Total N = 60 Hence, and S O L U T I O N S 2 45 + f1 + f2 = 60 f1 + f2 = 15 N = 60 P-115 Median = 28.5, ∴ Median class is 20 – 30. N − c. f Median = l + 2 ×h f 30 – 5 − f1 28.5 = 20 + × 10 20 8.5 × 2 = 25 – f1 ⇒ ⇒ f1 = 25 – 17 = 8 From (1), f2 = 15 – f1 = 15 – 8 = 7 ∴ f1 = 8 and f2 = 7. ...(1) 1 1 SUMMATIVE ASSESSMENT WORKSHEET-87 SECTION A 1. x = 27. 2. n+1 Median = 2 1 th 13 + 1 observation = 2 th observation = 7th observation. 1 SECTION B 3. Heights No. of girls 120 and more 50 130 and more 48 140 and more 40 150 and more 28 160 and more 8 2 SECTION C 4. (i) No. of children (xi) No. of famlies (fi) fi xi 0 5 0 1 11 11 2 25 50 3 12 36 4 5 20 5 2 10 Total Σfi = 60 Mean = = Σfixi = 127 ∑ f i xi ∑ fi 127 = 2·12 approx. 60 1 (ii) Mean of ungrouped data. (iii) For progress, we should decrease population growth. P-116 1 M A T H E M A T I C S -- ½ ½ X T E R M – 1 SECTION D 5. y c.f. 200 More than 80 200 180 More than 100 180 160 More than 120 150 More than 140 130 More than 160 90 Wages (80, 200) 190 Scale x-axis 2 cm = 10 units y-axis 1 cm = 10 units (100, 180) 170 (120, 150) 150 More than ogive 140 (140, 130) 130 120 2 2 110 100 90 (160, 90) 80 70 60 50 40 30 20 10 0 80 100 120 140 Lower Lts SUMMATIVE ASSESSMENT 160 x WORKSHEET-88 SECTION A 1. From the table it is clear that the frequency is maximum for the class 30 – 40, so modal class is 30 – 40. 1 SECTION B 2. Modal class : 60 – 80 Here, l = 60, f1 = 61, f0 = 52, f2 = 38, h = 20 Mode = l + ½ f1 − f0 ×h 2 f1 − f0 − f2 ½ = 60 + 61 − 52 × 20 122 − 52 − 38 ½ = 60 + 9 × 20 = 65·62 32 ½ SECTION C 3. Class Interval Frequency Cumulative Frequency 135 – 140 4 4 140 – 145 7 11 145 – 150 18 29 150 – 155 11 40 155 – 160 6 46 160 – 165 5 51 Total S O L U T I O N S N = 60 3 P-117 SECTION D 4. Let assumed mean, a = 649·5 and h = 100 Life time (in hrs) xi ui = x i − a h fi f iu i 400 – 499 449·5 –2 24 – 28 500 – 599 549·5 –1 47 – 47 600 – 699 649·5 0 39 0 700 – 799 749·5 1 42 42 800 – 899 849·5 2 34 68 900 – 999 949·5 3 14 42 Σfi = 200 Σfiui = 77 Total ∴ – Mean, x = a + FG Σf u H Σf i i i IJ K ×h 2 1 77 × 100 200 = 649·5 + 38.5 = 688. = 649·5 + 1 Average life time is 688 hours. SUMMATIVE ASSESSMENT WORKSHEET-89 SECTION A 1. 2. Median = 1 2 mode + mean 3 3 = 1 2 (8) + (8) 3 3 = 16 + 8 3 = 24 = 8. 3 1 The median of the data is 42·5. SECTION B 3. Modal class : 5 – 7 ½ Here l = 5, f1 = 80, f0 = 45, h = 2, f2 = 55 f1 − f0 Mode = l + 2 f − f − f × h 1 0 2 P-118 =5+ 80 – 45 ×2 160 – 45 – 55 =5+ 35 × 2 = 6·17. 60 M A T H E M A T I C S -- ½ 1 X T E R M – 1 SECTION C 3. Let assumed mean, a = 35 and h = 10. xi − a h fi f iu i 5 –3 5 – 15 15 –2 13 – 26 25 –1 20 – 20 35 0 15 0 45 1 7 7 55 2 5 10 Σfi = 65 Σfiui = – 44 xi ui = (Class Marks) Total Σfi ui – Mean, x = a + Σf × h i ∴ = 35 + 1½ ½ −44 × 10 65 = 35 – 6·76 – x = 28·24. 1 SECTION D 4. Draw the ‘less then’ ogive and ‘more than’ ogive simultaneously. c.f. Less than 30 40 50 60 70 80 90 c.f. More than 10 18 30 54 60 85 100 20 30 40 50 60 70 80 100 90 82 70 46 40 15 2 y (20, 100) 100 90 Less than ogive (80, 85) (40, 82) 80 Cumulative frequency (90, 10) (30, 90) More than ogive 70 (50, 70) (70, 60) 60 (60, 54) 50 (60, 46) 40 (70, 40) 30 2 (50, 30) 20 (40, 18) 10 (80, 15) (30, 10) 0 10 20 30 40 50 60 70 80 90 x From The Graph Median = 58.3 S O L U T I O N S P-119 SUMMATIVE ASSESSMENT WORKSHEET-90 SECTION A 1. In the given formula l represents the lower limit of the class with highest frequency. 1 2. The require formula is 3 Median = Mode + 2 Mean 1 SECTION B 3. Class Cumulative frequency More than 50 60 More than 60 48 More than 70 30 More than 80 20 More than 90 5 2 SECTION C 3. (i) Here class intervals are not in inclusive form. So, we first convert them in inclusive form by subtracting 1/2 from the lower limit and adding 1/2 to the upper limit of each cases. where h is the difference between the lower limit of a class and the upper limit of the preceding class. The given frequency distribution in inclusive form is as follows : Age (in years) No. of cases 4·5 – 14·5 6 14·5 – 24·5 11 24·5 – 34·5 21 34·5 – 44·5 23 44·5 – 54·5 14 54·5 – 64·5 5 we observe that the class 34·5 – 44·5 has the maximum frequency. So, it is the modal class such that 1 Here, l = 34.5, h = 10, f1 = 23, f0 = 21, f2 = 14 f1 – f0 ×h 2 f1 – f 0 – f 2 Now, Mode = l + ⇒ Mode = 34.5 + = 34·5 + 23 – 21 × 10 46 – 21 – 14 2 × 10 11 = 34·5 + 1·81 1 = 36·31 (ii) Mode of grouped data. (iii) If we practise habit of cleanliness we will be able to put disease at on arm’s length. P-120 M A T H E M A T I C S -- X ½ ½ T E R M – 1 SECTION D 4. We prepare cumulative frequency table : Height (in cm) Frequency Height Less than Cumulative Frequency 140 – 143 3 143 3 143 – 146 9 146 12 146 – 149 26 149 38 149 – 152 31 152 69 152 – 155 45 155 114 155 – 158 64 155 178 158 – 161 78 161 256 161 – 164 85 164 341 164 – 167 96 167 437 167 – 170 72 170 509 2 Now we mark upper class limits on X-axis and cumulative frequency on Y-axis. We plot (140, 0), (143, 3), (146, 12), (149, 38), (152, 69), (155, 114), (158, 178), (161, 256), (164, 341), (167, 437), (170, 509) These points are joined by line segments to obtain the cumulative frequency polygon as shown in Figure Y 550 500 450 400 Cuf 350 300 250 200 150 100 50 X 140 143 146 149 152 155 158 161 164 167 170 Heights S O L U T I O N S P-121 SUMMATIVE ASSESSMENT WORKSHEET-91 SECTION A 1. In the distribution, median class = 20 – 25 Hence, lower limit of median class = 20 and modal class = 25 – 30 So, lower limit of modal class = 25 Sum of lower limits of median class and lower limit of modal class = 25 + 20 = 45. 1 SECTION B xi 2. fi xifi 1 1 1 3 2 6 5 1 5 7 5 35 9 6 54 11 2 22 13 3 39 Total 20 162 1 Σfi xi Mean = Σf i ½ 162 = 8·1 20 ∴ Mean number of plants per house is 8·1. – x = SECTION C xi (Class marks) 3. fi fixi 10 30 50 70 90 12 15 32 p 13 120 450 1600 70p 1170 Total Σfi = 72 + p We know that Mean, – x = ⇒ 53 = ⇒ 3340 + 70p = ⇒ 3340 + 70p = ⇒ 70p – 53p = ⇒ 17p = p= P-122 Σfixi = 3340 + 70p 1 Σfi xi Σfi 3340 + 70 p 72 + p 53 (72 + p) 3816 + 53p 3816 – 3340 476 476 = 28. 17 M A T H E M A T I C S -- ½ ½ 1 X T E R M – 1 SECTION D 4. Frequency distribution given below : Age (in years) Frequency Age less than Cumulative Frequency 0·5 – 9·5 5 9·5 5 9·5 – 19·5 15 19·5 20 19·5 – 29·5 20 29·5 40 29·5 – 39·5 23 39·5 63 39·5 – 49·5 17 49·5 80 49·5 – 59·5 11 59·5 91 59·5 – 69·5 9 69·5 100 2 Now we plot points (9·5, 5), (19·5, 20), (29·5, 40), (39·5, 63), (49·5, 80) (59·5, 91) and (69·5, 100) and join them to obtain the required ogive as shown in figure : 90 80 70 60 50 40 30 20 10 –0.5 9.5 19.5 29.5 39.5 49.5 59.5 69.5 SUMMATIVE ASSESSMENT WORKSHEET-92 SECTION A 1. In the given distribution, Median class = 160 – 165 So upper limit of Median class = 165 and So Modal class = 150 – 155 Lower limit of Modal class = 150 Hence, sum of upper limit of Median class and lower limit of modal class = 165 + 150 = 315. 1 SECTION B f1 - f 0 Mode = l + 2 f - f - f × h 1 0 2 2. 1 Here, modal class : 30 – 40, l = 30, f1 = 25, f0 = 20, f2 = 12, h = 10 S O L U T I O N S ½ P-123 ∴ Mode = 30 + = 30 + 25 – 20 ×10 50 – 20 – 12 5 × 10 18 = 30 + 2·77 = 32·77 (Modal age). ½ SECTION C 3. Class Interval Frequency 0 – 10 8 10 – 20 12 20 – 30 25 30 – 40 13 40 – 50 12 Total 70 1 Here, modal class 20 – 30 and l = 20, f1 = 25, f2 = 13, f0 = 12, h =10 ½ æ f1 - f 0 ö ÷ Mode = l + ç ç2 f - f - f ÷ × h è 1 0 2ø = 20 + ½ FG 25 − 12 IJ × 10 H 50 − 12 − 13 K ½ 13 × 10 25 = 20 + 5·2 = 25·2. = 20 + SECTION D 4. xi ui = xi - a h f iu i Height (in cm) Number of girls (fi) 120 – 130 2 125 –2 –4 130 – 140 8 135 –1 –8 140 – 150 12 145 0 0 150 – 160 20 155 1 20 160 – 170 8 165 2 16 Total Σfi = 50 Σfiui = 24 Let assumed mean, a = 145 and h = 10 ∴ Σfi ui – Mean, x = a + h × Σf i 2 24 × 10 50 = 145 + 4·8 – x = 149·8. – x = 145 + P-124 M A T H E M A T I C S -- 1 1 X T E R M – 1 SUMMATIVE ASSESSMENT WORKSHEET-93 SECTION A 1. Time Frequency Cumulative frequency 0 – 10 8 8 10 – 20 10 18 20 – 30 12 30 30 – 40 22 52 40 – 50 30 82 50 – 60 18 100 N = 50 2 Now Hence, median class is 30 – 40. 1 SECTION B 2. Here, the modal class : 30 – 40 l = 30, f1 = 25, f0 = 10, f2 = 12, h = 10 ½ f1 − f0 Mode = l + 2 f − f − f × h 1 0 2 ½ = 30 + 25 − 10 × 10 50 − 10 − 12 ½ = 30 + 15 × 10 = 35·35 28 ½ SECTION C 3. (i) Let the assumed mean, A = 1400 and h = 400. Calculation of Mean Height (in m) x1 No. of Villages f1 D = xi –1400 200 600 1000 1400 1800 2200 142 265 560 271 89 16 – 1200 – 800 – 400 0 400 800 Total N= Σfi= 1343 ui = x i − 1400 400 –3 –2 –1 0 1 2 f iu i – 426 – 530 – 560 0 89 32 Σfiui = –1395 1 We have A = 1400, h = 400, Σfiui = –1395 and N = 1343. RS 1 ∑ f u UV TN W F –1395 IJ = 1400 + 400 × GH 1343 K Mean = A + h i i = 1400 – 415·49 = 984·51 S O L U T I O N S 1 P-125 (ii) Mean by assumed mean method. ½ (iii) Villages are much necessary to keep a balance between the ecological problems. ½ SECTION D y 4. More than c.f. 100 0 100 90 10 90 20 72 30 32 40 12 80 70 60 50 1 40 2 30 20 From graph, Hence, N 100 = = 50 2 2 Median = 25. 10 0 10 20 30 1 SUMMATIVE ASSESSMENT 40 Class x WORKSHEET-94 SECTION A 1. The number of athletes who completed the race in less than 14·4 seconds = 2 + 14 + 16 = 32. 1 SECTION B 2. From the cumulative frequency distribution 15 + x = 28 ⇒ and 1 x = 28 – 15 = 13 43 + 18 = y 1 y = 61 Hence, x = 13 and y = 61. SECTION C 3. Modal class : 201 – 202 1 Here l = 201, f1 = 26, f0 = 12, f2 = 6, h = 1 f1 − f0 Mode = l + 2 f − f − f × h 1 0 2 Mode = 201 + = 201 + P-126 26 − 12 ×1 52 − 12 − 6 1 14 = 201·41. 34 1 M A T H E M A T I C S -- X T E R M – 1 SECTION D xi (Class marks) 4. fi fixi 15 12 180 45 21 945 75 x 75x 505 52 5460 135 y 135y 165 11 1815 Total Σfi = 150 Σfixi = 8400 + 75x + 135y 1 x + y = 54 Σfi xi – x = Σf i ∴ 8400 + 75 x + 135 y 150 13650 = 8400 + 75x + 135y 91 = 75x + 135y = 5250 ⇒ 5x + 9y = 350 From table, ...(i) 1 ...(ii) 1 96 + x + y = 150 Solving eqs. (i) and (ii), we get x + y = 54 1 x = 34 and y = 20. SUMMATIVE ASSESSMENT WORKSHEET-95 SECTION A 1. Class Frequency Cumulative frequency 20 – 40 10 10 40 – 60 12 22 60 – 80 20 42 80 – 100 22 64 N = 32 2 Q 1 Hence, Median class is 60 – 80. SECTION B 2. Modal class : 40 – 60 Also, l = 40, f1 = 28, f2 = 20, f0 = 16, h = 20 1 f1 − f0 Mode = l + 2 f − f − f × h 1 0 2 28 − 16 × 20 56 − 16 − 20 = 40 + 12 = 52. 1 ½ = 40 + S O L U T I O N S ½ P-127 SECTION C 3. From the given table, 12 + a = 25 ⇒ ½ ½ a = 25 – 12 = 13 25 + 10 = b ⇒ b= 35 ½ ⇒ b + c = 43 ½ ⇒ c = 43 – b = 43 – 35 = 8 and 48 + 2 = d ⇒ ½ d = 50 SECTION D 4. Now we draw cumulative frequency distribution table by less than method. Marks Number of students Marks less than Cumulative Frequency 0 – 10 6 10 6 10 – 20 25 20 31 20 – 30 48 30 79 30 – 40 72 40 151 40 – 50 116 50 267 50 – 60 63 60 330 2 Now we plot the points (0, 0), (10, 6), (20, 31), (30, 79), (40, 150), (50, 267), (60, 330) we get following ogive : Y 350 300 250 200 150 100 50 0 P-128 10 20 30 40 50 60 X M A T H E M A T I C S -- X T E R M – 1 FORMATIVE ASSESSMENT WORKSHEET-96 Objective Type Questions 1. 6. 2. (C) 7. (B) (B) (A) Fill in the blanks 1. 2. 3. 4. 5. 6. mode uniform mode mode + 2 mean median mode 7. a+b 2 8. Σ fi xi Σ fi 9. x= 10. 10 × 1 = 10 3. (A) 8. (C) 4. (C) 9. (A) 5. (B) 10. (D) 10 × 1 = 10 Σ fi di Σ fi mode. ●● S O L U T I O N S P-129
© Copyright 2025 Paperzz