EXPONENTIAL AND LOGARITHMIC FUNCTIONS 6) 7) 8) 9) 10) 11) 12) 13) 14) Evaluate e2.7 correct to two decimal places. Sketch the curve y = e-x Differentiate 4ex Differentiate xex x Find the derivative of x e x 9 Differentiate (1 + e ) Differentiate e5x Find the derivative of e3x + 2x . Find the exact gradient of the tangent to the curve y = ex at the point where x = 3. Find the equation of the tangent to the curve y = e2x at the point (1,e2). Find the equation of the normal to the curve y = 2e4x + 1 at the point where x = 0. Find the stationary point on the curve y = (x +1) ex and determine its nature. Find the indefinite integral (primitive function) of e7x. Find ( e 2 x e x ) dx 15) Evaluate 16) Find the exact value of 17) Find the exact area bounded by the curve y = 2e2x, the x-axis and the lines x = 1 and x=3 Find the area enclosed between the curve y = e3x+1, the x-axis and the lines x = 0 and x = 2 correct to 3 significant figures.. Find the exact volume of the solid formed when the curve y = e2x is rotated about the x-axis from x = 1 to x = 3. x 3e Use Simpson’s rule with five function values to find an approximation to dx to 1 x two decimal places. Evaluate log10 56.3 to one decimal place. Evaluate ln 6.89 to two significant figures. Evaluate log2 32. Evaluate log5 125. Evaluate log36 6. Evaluate log7 7. Evaluate log9 1. 1 Evaluate log2 16 Sketch the curve y = ln x on a number plane. Solve logx 16 = 2 Solve log3 y = 4 Simplify loga p + logaq - logar 1) 2) 3) 4) 5) 18) 19) 20) 21) 22) 23) 24) 25) 26) 27) 28) 29) 30) 31) 32) 1 0 hscintheholidays.com.au e3x dx to two decimal places. 5 1 e5x dx All Rights Reserved. Page 1 of 5 33) 34) 35) 36) 37) 38) 39) 40) 41) 42) 43) 44) 45) 46) 47) 48) 49) 50) 51) 52) 53) 54) 55) Simplify 2logn3 + logny Evaluate log8 4 + log8 16. Show that log a 8 + 2log a 3 - log a 6 = log a 12. Given log5 3 = 0.68 and log5 4 = 0.86, find (a) log5 12 (b) log5 0.75 (c) log5 27 (d) log5 15 If logp x = n and logp y = t, find logp xy2 in terms of n and t. Evaluate log4 7 to one decimal place. Solve 2x = 5 to three significant figures. Solve 52x+1 = 3 to two decimal places. Solve 2ex = 13 to two significant figures. Consider the equation x = 3e2t. (a) Find x when t = 2, to one decimal place. (b) Find t when x = 100, to one decimal place. d2x (c) Show that 4x . dt 2 Differentiate loge (x+1) Differentiate (ln x + x2)4 Differentiate xlnx. 2x 3 Differentiate loge x 1 Differentiate loge (ex + 1) Find the equation of the tangent to the curve y = loge x at the point (4,loge 4). Show that the function f(x) = ln (2x + 3) has no stationary points. 1 Find the indefinite integral (primitive function) of x3 4 dx Evaluate to two decimal places. 1 2x 1 3 x Find the exact value of 2 dx 2 x 1 1 (a) Find the exact area bounded by the curve y = , the x-axis and the lines x = 2 x and x = 5. (b) This area is rotated about the x-axis. Find the volume of the solid formed. The curve y = ln x is rotated about the y-axis from y = 0 to y = 2. Find the exact volume of the solid of revolution. (a) Find the approximate area bounded by the curve y = ln x, the x-axis and the lines x = 1 and x = 3 by using Simpson’s rule with three function values (to two decimal places). (b) By considering an area involving the y-axis, find the exact area in part (a). hscintheholidays.com.au All Rights Reserved. Page 2 of 5 ANSWERS 1) 2) 14.88 y 4 3 2 1 x -3 -2 -1 -1 1 2 3 -2 -3 -4 3) 4) 5) 6) 7) 8) 9) 10) 11) 12) 13) 14) 15) 16) 17) 18) 19) 20) 21) 22) 4ex xex + ex = ex (x + 1) e x xe x 1 x x e2x e 9ex (1 + ex )8 5e5x 3e3x + 2 e3 2e2 x - y - e2 = 0 x + 8y - 24 = 0 (-2,-e2) minimum 1 7x e C 7 1 2x e e x C 2 6.36 1 5 20 e ( e 1) 5 e2 ( e4 1) units2 365 units2 4 8 e ( e 1) units3 4 8.04 1.8 1.9 hscintheholidays.com.au All Rights Reserved. Page 3 of 5 23) 24) 25) 26) 27) 28) 29) 5 3 1 2 1 0 -4 y 2 1 x -2 -1 1 2 3 -1 -2 30) 31) 32) 33) 34) 35) 36) 37) 38) 39) 40) 41) 42) x=4 y = 81 pq loga r logn 9y 2 LHS = log a 8 + 2log a 3 - log a 6 = log a 8 + log a 32 - log a 6 8 32 = log a 6 = log a 12 = RHS So log a 8 + 2log a 3 - log a 6 = log a 12. (a) 1.54 (b) -0.18 (c) 2.04 (d) 1.68 n + 2t 1.4 x = 2.32 x = -0.16 x = 1.9 (a) x = 163.8 (b) t = 1.8 (c) x = 3e2t hscintheholidays.com.au All Rights Reserved. Page 4 of 5 43) 44) 45) 46) 47) 48) 49) 50) 51) 52) 53) 54) 55) dx 6e 2 t dt d 2x 12 e 2 t 2 dt = 4(3e2t) = 4x 1 x 1 1 4( 2 x )(ln x x 2 ) 3 x 1 + ln x 2 1 5 2 x 3 x 1 ( 2 x 3)( x 1) ex ex 1 x - 4y + 4loge 4 - 4 = 0 2 f 1 (x) = 0 for any x. 2x 3 ln (x - 3) + C 0.97 1 8 ln C 2 3 3 5 (a) ln units2 (b) units3 2 10 4 ( e 1) units3 2 (a) 1.29 (b) 3ln3 - 2 units2 hscintheholidays.com.au All Rights Reserved. Page 5 of 5
© Copyright 2026 Paperzz