2 2 2 2 x x +2x x +2x 0 41. ( 1+x )0 = (1+x)·2x−1·x = (1+x) 2 . ( (1+x)2 ) = (1 − (1+x)2 1)−3 ⇒ f 00 (1) = 2 · 2−3 = 41 . 1 )0 (x+1)2 50. (a) P 0 (2) = F 0 (2)G(2) + F (2)G0 (2) = 0 · 2 + 3 · 1 2 (b) Q0 (7) = 55. R0 (0) = G(7)F 0 (7)−F (7)G0 (7) G(7)2 g(0)f 0 (0)−f (0)g 0 (0) g(0)2 = = 1·1−0·0 12 1· 14 −5· −2 3 12 = 2 ·0−2(x+1)·1 = − (x+1) (x+1) = 2(x + 4 = 32 . 43 . 12 = 1. 59. (a) (f gh)0 = ((f g)h)0 = (f g)0 h + (f g)h0 = (f 0 g + f g 0 )h + f gh0 . (b) f = g = h ⇒ (f 3 )0 = 3f 2 f 0 by (a). (c) f = ex ⇒ (e3 x)0 = 3e2x ex = 3e3x by (b). 7. (c cos t + t2 sin t)0 = −c sin t + (2t sin t + t2 cos t). 31. (a) ( tan x − 1 0 sec x(tan x − 1)0 − (sec x)0 (tan x − 1) ) = sec x sec2 x 2 sec x(sec x) − (tan x sec x)(tan x − 1) = sec2 x sec2 x − tan x(tan x − 1) 1 + tan x = = . sec x sec x sin x x−1 0 (b) ( tan ) = ( cos x1 sec x −1 0 ) = (sin x − cos x)0 = cos x + sin x. cos x (c) 1+tan x sec x = sin x 1+ cos x 1 cos x = cos x + sin x. . We know cos x = 12 for x = π3 . Hence, for 33. f 0 (x) = 1 + 2 cos x = 0 ⇔ cos x = −1 2 . So, we should consider 2kπ + (π ± π3 ), where k ∈ Z. x = π ± π3 , we’ll have cos x = −1 2 35. (a) velocity = v(t) = (8 sin t)0 = 8 cos t cm/s; acceleration = a(t) = (8 cos t)0 = −8 sin t cm/s2 . √ 2π π (b) x( 2π ) = 8 sin = 8 sin = 4 3. v( 2π ) = 8 cos 2π = −8 cos π3 = −4. a( 2π )= 3 3√ 3 3 3 3 2π −8 sin 3 = −4 3. 37. x = 10 sin θ. dx dθ = 10 cos θ. θ = π 3 ⇒ 5ft/rad. 45. sin θ lim sinθ θ sin θ 1 1 θ→0 θ = lim = lim = = sin θ sin θ 1 θ→0 θ + tan θ θ→0 1 + 1+1 2 1 + lim θ cos θ θ cos θ θ→0 1 49. (sin x)0 = cos x; (cos x)0 = − sin x; (− sin x)0 = − cos x; (− cos x)0 = sin x. Hence, d99 d3 (sin x) = dx 3 (sin x) = − cos x. dx99 51. (−A sin x−B cos x)+(A cos x−B sin x)−2(A sin x+B cos x) = sin x ⇒ (A−3B) cos x = if A − 3B 6= 0, which is impossible because we (3A + B + 1) sin x ⇒ tan x = 3A+B+1 A−3B get a constant value for tan x. Hence, A − 3B = 0 and 3A + B + 1 = 0. And we can and B = −1 . solve A = −3 10 10 cos x cos x−sin x(− sin x) cos2 x sin x) ( cos1 x )0 = cos x·0−1·(− cos2 x sin x 0 53. (a) (tan x)0 = sec2 x and ( cos ) = x (b) (sec x)0 = tan x sec x and = 1 cos2 x = sec2 x. = tan x sec x. (c) (sin x + cos x)0 = cos x − sin x and ( 54. A(θ) = 21 π(10 sin lim+ θ→0 π(10 sin( θ2 )) 2(10 cos( θ 2 )) 1 + cot x 0 csc x(− csc2 x) − (1 + cot x)(− csc x cot x) ) = csc x csc2 x 2 2 csc x(cot x − csc x) + csc x cot x = csc2 x 1 cot x =− + = − sin x + cos x csc x csc x θ 2 )2 and B(θ) = 2 · 12 (10 sin = lim+ θ→0 π(10 tan( θ2 )) 2 = 0. 2 θ 2 )(10 cos θ 2 ). Hence, lim+ θ→0 A(θ) B(θ) =
© Copyright 2026 Paperzz