Graphs of Logarithmic Functions y = log a x represents the graph of a logarithmic function where x > 0, a > 0 and a ≠ 1. Exponential Function Logarithmic Function f ( x ) = log a x f ( x) = a x f ( x) = 2 x f ( x ) = log 2 x The logarithmic and exponential functions are inverses. Therefore, they are symmetrical about the line y = x. y=x Properties of the Exponential Function Domain: All Real Numbers Range: y > 0 y‐intercept: (0, 1) Horizontal Asymptote: y = 0 The function is increasing. Properties of the Logarithmic Function Domain: x > 0 Range: All Real Numbers x‐intercept: (1, 0) Vertical Asymptote: x = 0 The function is increasing. f ( x) = 2 x f ( x ) = log 2 x Properties of y = log 2 x Domain: x > 0 Range: All real numbers y = log 2 x x-intercept: (1, 0) Vertical Asymptote: x = 0 y = log 4 x The function is increasing. Properties of y = log 4 x Domain: x > 0 Range: All real numbers x-intercept: (1, 0) Vertical Asymptote: x = 0 The function is increasing. The graph of y = log 4 x increases more slowly and is closer to the vertical asymptote. Transformations of the Graph of the Logarithmic Function y = log a ( − x ) Reflected over the vertical asymptote Domain: x < 0 Range: All Real Numbers x‐intercept: (‐1, 0) Vertical Asymptote: x = 0 The function is decreasing. f ( x) = log a ( − x ) f ( x ) = log a x y = − log a x Reflected over the known point Domain: x > 0 Range: All Real Numbers x‐intercept: (1, 0) Vertical Asymptote: x = 0 The function is decreasing. y = log a x y = − log a x y = log a ( x − h) Shifted h units to the right Domain: x > h Range: All Real Numbers x‐intercept: (1 + h, 0) Vertical Asymptote: x = h The function is increasing. y = log a x y = log a ( x − 2) y = log a ( x + h) Shifted h units to the left Domain: x > h Range: All Real Numbers x‐intercept: (1 + h, 0) Vertical Asymptote: x = h The function is increasing. y = log a ( x + 2) y = log a x y = log a ( x) + k Shifted k units up Domain: x > 0 Range: All Real Numbers Vertical Asymptote: x = 0 The function is increasing. y = log a ( x) + 2 y = log a x y = log a ( x) − k Shifted k units down Domain: x > 0 Range: All Real Numbers Vertical Asymptote: x = 0 The function is increasing. y = log a x y = log a ( x ) − 2 Directions: Graph each logarithmic function. Identify the domain, range, asymptotes, intercepts and determine if the function is increasing or decreasing. 1. y = log 4 ( x − 3) Domain: Range: Asymptote: y = log 4 x y = log 4 ( x − 3) 1. y = log 4 ( x − 3) Domain: Range: y = log 4 x y = log 4 ( x − 3) Asymptote: Intercept: Increasing/Decreasing: 2. y = − log 4 ( x − 2) Domain: y = log 4 x Range: Asymptote: Intercept: Increasing/Decreasing: y = − log 4 ( x − 2) 3. y = −3 − log 2 ( − x + 4) y = log 2 x Domain: Range: Asymptote: Intercept: Increasing/Decreasing: y = −3 − log 2 ( − x + 4)
© Copyright 2026 Paperzz