Maple project Math 180 2 2 3 I. Defining functions: f x 3x 5x 3 sin x 1 > f:=x->(3*x^2-5*x+3)*(sin(x^3+1))^2; Name: 2 2 3 f := x ® (3 x - 5 x + 3) sin(x + 1) Evaluate the function at x > f(Pi/2.0); 2 2 3 2 (0.7500000000 p - 2.500000000 p + 3) sin(0.1250000000 p + 1) Approximate the above value with 10 decimal places. > evalf[10]((.7500000000*Pi^2-2.500000000*Pi+3)*sin(.1250000000*Pi^3+1)^2); 2.480792228 Sketch the graph over the interval 2 ,2 > plot(f(x),x=-Pi..Pi); Take limit function for x approaches to > a:=limit(f(x),x=Pi/2); a := - 2 5 5 æ 1 3ö p + p cosç p ÷ 2 2 è 8 ø æ 1 3ö + 3 - 3 cosç p ÷ è 8 ø 2 2 2 æ 1 3ö æ 1 3ö 5 æ 1 3ö cos(1) - 5 p cosç p ÷ cos(1) sinç p ÷ sin(1) + p sinç p ÷ 2 è 8 ø è 8 ø è 8 ø 2 æ 1 3ö æ 1 3ö æ 1 3ö cos(1) + 6 cosç p ÷ cos(1) sinç p ÷ sin(1) - 3 sinç p ÷ è 8 ø è 8 ø è 8 ø 2 3 2 3 2 æ 1 3ö + p - p cosç p ÷ 4 4 è 8 ø - 3 2 æ 1 p 3ö p sinç ÷ 4 è 8 ø 2 cos(1) + 3 2 æ 1 3ö æ 1 3ö p cosç p ÷ cos(1) sinç p ÷ sin(1) 2 è 8 ø è 8 ø 2 2 sin(1) Approximate the above with five digits: > evalf[5](a); 2.4806 1. Use the above technique to evaluate the following: a) sin 3 x 2 5 x 1 lim x x2 1 b) tan( x 2 5 x 3 lim x 3 4 x 3 1 e sin x 2 sin(1) 2 sin(1) 2 2 5x 6 2 x 3 4 x 1 lim e x 5 x 3 cos x 2 4 x 0 c) d) lim x 3 x 3 2 x 2 4 x 5 II. Differentiation > f:=theta->sin(theta^2-3*theta+1)*(cos(theta-2))^3; f := sin( 23 1 ) cos( 2 )3 2 Define the first derivative: > fprime:=diff(f(theta),theta); fprime := cos( 23 1 ) ( 2 3 ) cos( 2 ) 33 sin( 23 1 ) cos( 2 ) 2 sin( 2 ) Find critical points: > solve(fprime,theta); 1 2 2 To determine whether the critical point is min or max, evaluate the second derivative at the critical point. Define the second derivative function: > fdouble:=diff(fprime,theta); fdouble := sin( 23 1 ) ( 2 3 ) 2 cos( 2 ) 32 cos( 23 1 ) cos( 2 ) 3 6 cos( 23 1 ) ( 2 3 ) cos( 2 ) 2 sin( 2 ) 6 sin( 23 1 ) cos( 2 ) sin( 2 ) 23 sin( 23 1 ) cos( 2 ) 3 > eval(fdouble,theta=2+0.5*Pi); 0 So the critical point here is an inflection point. 2. Do problems: Section 4.3: 59 – 62. 3. A cone of height h and radius r is constructed from a flat circular disk of radius a in. by removing a section AOC of arch length x in. and then connecting the edges OA and OC. a) b) c) Find a formula for the volume V of the cone in terms of x and a. Find radius r and height h in the cone of maximum volume for a = 4, 5, 6 and 8. How should we cut the disk of radius 4in (a=4in.) so that the volume of the cone maximum? III. Analyzing functions: Define a function > f:=x->5*x^3-7*x^4+1; f := x5 x37 x41 > plot(f(x),x=-infinity..infinity); Define the first derivative function > fprime:=diff(f(x),x); fprime := 15 x228 x3 Find critical points > solve(fprime,{x}); 15 { x0 }, { x0 }, { x } 28 Define the second derivative > fdouble:=diff(fprime,x); fdouble := 30 x84 x2 Check whether the critical point is min/max or inflection point. > eval(fdouble,x=0); 0 > eval(fdouble,x=15/28); -225 28 Second derivative is negative then it is a maximum. Now then we need to find the maximum point. > eval(f(x),x=15/28); 104683 87808 15 104683 So the maximum is , 28 87808 4. Do problem 2, Section 4.4: 36, 44 and 97 IV. Evaluate Riemann Sum using MAPLE Now, using Riemann Sum to evaluate integral 1 x dx . 3 0 First define the interval of the integral: > a:=0;b:=1; a := 0 b := 1 Define delta x: > deltax:=(b-a)/n; deltax := 1 n deltax := 1 n Now, define function: > deltax:=(b-a)/n; > f:=x->x^3; 3 f := x ® x Find xi a x > x[i]:=a+deltax*i; xi := i n Define the Riemann Sum: > RiemanSum:=Sum(f(x[i])*deltax, i=1..n); n RiemanSum := S i3 i= 1 n4 Then the actual area is: > Area:=limit(RiemanSum,n=infinity); Area := 5. 1 4 Follow the above outline to do the following problems: a) c) e) cos xe 2 x 1 dx b) cos x sin xdx d) cos 3 x sin 3 xdx f) 2 2 0 0 3 3 3x 5 dx 5 x 2 3 5 1 0 0 arcsin x dx 1 x2 cos2 x e sin2 x dx V. Find the integrals using MAPLE With Fundamental Theorem of Calculus Example 3 Define a function > f:=x->5*x^3-2*sin(2*x)+1; f := x5 x32 sin( 2 x )1 Define an integral > Int(f(x),x=0..1); 1 3 5 x 2 sin( 2 x )1 d x 0 > int(f(x),x); 5 4 x cos( 2 x )x 4 > int(f(x),x=0..1); 5 cos( 2 ) 4 > F:=int(f(x),x=0..1); 5 F := cos( 2 ) 4 > evalf(F); .8338531635 7. Do the following functions: Section 5.4: #24, 27, 28, and 32 Section 5.5: #36, 63, 64, and 65
© Copyright 2024 Paperzz