! CubeRoot Video214onwww.corbettmaths.com Workout Question1: Workouteachofthefollowing (a)∛8 (b)∛1 (c)∛0 (d)∛125 (e)∛1000 (f)∛27 (g)∛0 (h)∛64 (i)∛343 (j)∛729 (k)∛216 (l)∛8000 9 15 27 Question2: Belowisalistofnumbers. 0 1 4 7 8 Fromthelistwritedown: 11 20 30 (a) Thecuberootof64 (b) Thecuberootof1 (c) Thecuberootof27000 (d)Thecuberootof512 Question3: Workouteachofthefollowing Youmayuseacalculator (a)∛1331 (b)∛13824 (c)∛1728 (g)∛0.125 (h)∛42.875 (i)∛0.064 (d)∛3375 (e)∛2744 (f)∛125000 (j)∛1.728 (k)∛17.576 (l)∛1.953125 Question4: Betweenwhichtwoconsecutiveintegersdoeachofthefollowingliebetween? e.g.∛200liesbetween5and6 (a)∛50 (b)∛20 (c)∛400 (d)∛5 (e)∛950 (f)∛777 (e)∛90 (f)∛140 Question5: Estimateeachofthefollowing. Giveeachestimateto1decimalplace. (a)∛45 (b)∛130 (c)∛500 (d)∛3 Question6: Usingyourcalculator,workouttheanswerstoQuestion5. © CORBETTMATHS 2016 ! CubeRoot Video214onwww.corbettmaths.com Apply Question1: Jamessaysthecuberootof64is8. Explainhismistake. Question2: Megansaysthecuberootof27is9. Explainhermistake. Question3: Thecuberootof1is1. Findanothernumbersothatwhenitiscuberooted,itgivesthesamevalue. Question4: Harryhasthoughtofanumber. Heworksoutthecuberootofthenumber. Harrysayshisanswerislargerthanhisstartingnumber. Archiesayshemustbewrong. ShowthatHarrycouldbecorrect. Question5: Workoutthefollowingcuberoots (a) (b) (c) Question6: Shownisacubewithavolumeof8000cm³ Findx © CORBETTMATHS 2016 (d)
© Copyright 2026 Paperzz