dP(ft) 83 dP (ft) 35 dP (ft) 41 105 140 180 188 AHU 3 1,800 GPM Tout(F)= 50 Tin (F)= 40 9000 Managing Delta T in Buildings AHU 2 Tout(F)= 50 1,800 GPM Tout(F)= 50.0 1,800 GPM AHU 1 192.5 FT 5,400 77 Tret (F)= GPM 309 HP 270 221 50.0 Tsup(F)= HX Building Side Building Pump HX DC Side DC Pump 1 Presented By: Henry W. Johnstone, P.E. President and Director of Mechanical Engineering GLHN Architects & Engineers, Inc. MBH DC Pump 1 Chiller 1 Chiller 2 40 Water Cooled Air Conditioning COP 7 0.6 kW/Ton 2.25Gal/Tonhr @ 5 Cycle Steam cycle -450 Gal/MWH Combined cycle -250 Gal/MWH Building Cooling Load Qc W Qh Supply Air ASHRAE Summer Comfort Zone Outdoor Air Return Air Flow Energy Dry Bulb Wet Bulb Humidity Flow Content Moisture Content Airflow Enthalpy ExtractedAir Energy Extracted Moisture O Air Type O 3 3 btu/lbair(MBH) gr/lb (MBH) (gal/hr) (gal/hr) ( F) ( F) (ft /min) air (ft /min) Outside 100.00 87.00 176.33 51.80 1838,500 1,500 325 12 19 Return 80.00Outside 63.94 63.70 29.14 1,084 41 1,500 Supply 55.00Return 54.00 60.81 22.60 2438,500 1,500 142 2 841 39 7 8,500 Difference (Coil Cooling) 183 12 243 2 Total Cooling 10,000 426 14 Air Type The Coil Story Cooling Coil q (heat exchanged) = m (mass flow) Cp (specific heat) dT (log mean) load (BTUH) = 500 x flow (gpm) x Dt WTR (°F) on the water side and load (BTUH) = 1.08 x flow (CFM) x dT AIR (°F) on the air side The Coil Story 85 80 TEAT 75 Air Side Temperature 70 65 Q 60 TLWT1 TLAT dq 55 50 45 TEWT1 Water Side 40 35 1 2 Location The Coil Story 85 80 TEAT Temperature 75 Air Side 70 65 TLWT2 TLAT 60 55 50 45 TLWT1 TEWT1 Water Side TEWT2 40 35 1 2 Location The Coil Story That Simple? • • • • • Dehumidification- Dewpoint Airside Velocity- Wetability Materials, Fin Configuration, Circuiting Fouling Water Velocity- Flow Regime - Turbulators The Coil Story That Simple? • Dynamics – Load Variations – Control Loop Stability TC T LAT flow temperature pressure MBH CFM EDB/EWB The Coil Story Specific flow rate, gpm per ton Flow Rate as a Function of Water Temperature Difference (dT) 8 7 6 5 4 3 2 1 0 0 2 4 6 8 10 12 14 16 18 20 22 Water temperature difference, F deg Q(gpm) = Load (Tons) 24 dt(oF) 24 The Coil Story 1200 1000 800 flow 600 dP HP 400 Distribution System hL = f L V 2 D 2 200 0 1 2 3 4 5 6 7 Pump Work (hp) = Head (ft) x flow (gpm) 3960 x eff OR Pump Work = k (flow)3 8 9 10 The Coil Story 20 EWT WRT LWT Flow MBH 18 40 18.1 58.1 120 1089 4.44 10.06 14.50 1902 90.8 41 16.6 57.6 132 1089 5.00 9.22 14.22 2092 90.8 14 42 15.0 57.0 146 1089 5.56 8.33 13.89 2314 90.8 12 43 13.4 56.4 163 1089 6.11 7.44 13.56 2584 90.8 10 44 111.7 55.7 186 1089 6.67 6.50 13.17 2948 90.8 7.22 5.56 12.78 3455 90.8 LWT WTR 16 WTR 8 45 10.0 55.0 218 1089 EWT dT LWT Flow TR 6 46 8.3 54.3 263 1089 7.78 4.61 12.39 4169 90.8 4 47 6.5 53.5 336 1089 8.33 3.61 11.94 5326 90.8 2 0 0 40 4.44 41 42 43 5 5.56 6.11 44 45 46 6.67 EWT 7.22 47 48 7.78 8.33 EDB/EWB = 85/67 ACFM = 30,000 dP (ft) 13 82 85 98 100 AHU 3 1,000 GPM Tout(F)= 58 Tin (F)= 40 9000 MBH Case 1: 40 F EWT/58 LWT 18 F dT Flow = 1,000 GPM Case 2: 46 F EWT/54 LWT 8 F dT Flow = 2,250 GPM dP (ft) 13 82 85 dP (ft) 63 97 100 101 113 176 AHU 3 1,000 AHU 3 GPM 2,250 Tout(F)= 58 Tin (F)= 40 9000 77 Tout(F)= 54 Tin (F)= 46 9000 MBH 145.5 FT GPM 9 HP GPM MBH 30.8 FT 1,002 188 2,252 108 106 77 GPM 97 HP HX Building Side Building Pump 222 213 HX Building Side Building Pump HX DC Side Case 1: one coil 40 F EWT/58 LWT 18 F dT 1,000 GPM 31 ft dP 9 HP HX DC Side Case 2: one coil 46 F EWT/54 LWT 8 F dT 2,250 GPM 145 ft dP 97 HP dP(ft) 83 dP (ft) 11 dP (ft) dP (ft) 13 86 97 110 16 35 dP (ft) 18 41 90 100 113 106 135 124 176 AHU 3 AHU 3 1,000 1,200 1,800 GPM Tout(F)= 58 Tin (F)= 40 9000 GPM Tout(F)= 57 50 Tin 40 (F)= 42 Tin (F)= 9000 MBH GPM 1,000 GPM Tout(F)= 54 1,200 1,286 GPM GPM Tout(F)= 54.0 1,200 1,286 GPM GPM AHU AHU 11 AHU 1 89.0 FT FT 166.5 63.0 FT 3,000 77 GPM 56 HP MBH AHU AHU 22 AHU 2 1,000 128 184 140 77 77 124 Tret (F)= 3,600 4,371 GPM GPM 95 HP HP 216 166 243 143 210 Tsup(F)= 52.4 40 HX Side Building Side HX Building HX Building Side Building Pump Building Pump Building Pump HX DC Side Case 1: three coils All at 40 F EWT/58 LWT 18 F dT 3,000 GPM 63 ft dP 56 HP HX Side DC Side HX DC Case 2: 3: three three coils coils Case All at at 42 40 FF EWT/57 EWT in LWT 15 F dT All 2 at 54 LWT 14 F dT 3,600 GPM 1 atft dP 50 LWT 10 F dT 89 4,371GPM 95 HP 167 ft dP 216 HP -20.0 dP(ft) 83 dP(ft) 43 dP (ft) dP (ft) dP (ft) 21 18 135 131 110 92 35 dP (ft) 41 105 140 180 AHU 3 1,286 AHU 3 GPM 1,800 Tin (F)= 40 Tout(F)= 54 GPM Tout(F)= 50 Tin (F)= 40 MBH 9000 9000 AHU 2 Tout(F)= 54 1,286 GPM Tout(F)= 54.0 1,286 GPM 1,800 GPM Tout(F)= 50.0 1,800 GPM AHU 1 101.5 FT 77 Tret (F)= 192.5 FT GPM 116 HP MBH AHU 2 Tout(F)= 50 AHU 1 3,857 5,400 152 179 Tsup(F)= 54.0 40 77 Tret (F)= GPM 309 HP 270 221 50.0 Tsup(F)= HX Building Side HX Building Side Building Pump Building Pump HX DC Side HX DC Side 3900 GPM DC Pump 1 188 Chiller 1 Impact on DC Loop 5400 GPM DC Pump 1 DC Pump 1 Chiller 1 Chiller 2 40 District Diagram AHU 3 AHU 3 AHU 3 AHU 3 AHU2 AHU2 AHU1 AHU1 76.1 FT 3,600 GPM 55.0 40 HEAT EXCHANGER 76.1 FT 3,600 GPM 55.0 HEAT EXCHANGER 40 AHU2 AHU1 76.1 FT 3,600 GPM 55.0 40 HEAT EXCHANGER AHU 3 AHU 3 55 mr5 1,200 GPM 40 ms5 55.0 AHU 3 AHU2 AHU2 mr4 55.0 1,200 GPM 55 GPM AHU1 55 40 ms4 AHU2 AHU1 mr3 55.0 1,200 40 ms3 AHU1 76.1 FT 76.1 FT 3,600 mr2 3,600 GPM 55.0 GPM 55.0 HEAT EXCHANGER 40 ms2 HEAT EXCHANGER 40 76.1 FT 3,600 GPM 55.0 HEAT EXCHANGER 40 Impacts on Building Operation • Design Intent - Customer Satisfaction – Space Humidity and Temperature Control • Building Energy Consumption - Cost – Pump and Fan – Hot Calls and Maintenance • DC Interface-Contractual Obligation – Building Leaving Water Temperature/Flow Impacts on DC Operation • Plant Operation – Chiller Staging – Plant Energy Efficiency – Thermal Energy Storage Capacity • Distribution Capacity – Opex – Pumping Energy – Capex – Ton per inch of pipe diameter Solutions • Supply Side dT Erosion – Bypass – Fouling at HX and Coils • Return Side dT Erosion – – – – – Air Side Terminal Design and Diagnosis Separate Control on Sensible and Latent Leaving Air Setpoint Control Chilled Water Valve Control: Pressure Independence Monitoring and Intelligence • Analysis – Design and Operation Heat Exchanger Fouling • Coil Air Side • Coil and HX Water Side • Chiller Evaporator Terminal Design • Dedicated Outdoor Air – Exhaust Air Heat Recovery – Separate Sensible and Latent • Series Latent and Sensible • Elimination of Reheat • Data Acquisition – Real Time Load Analytics Pressure Independent Control T F AHU1 T F AHU1 T VFD HX Building Side Building Pump F HX DC Side P VFD DC Pump Chiller Plant P Summary Diligence Data Analysis Technology Persistence Questions? [email protected]
© Copyright 2026 Paperzz