Math 180: Calculus I Fall 2014 September 23 TA: Brian Powers 1. Evaluate the following limits using the facts that: lim x→0 sin x =1 x and lim x→0 cos x − 1 =0 x (a) limx→0 tanx5x SOLUTION: lim x→0 tan 5x sin 5x = lim definition of tan x→0 x cos x x 1 sin 5x = lim lim Limit product rule x→0 cos x x→0 x sin 5x = (1) lim Evaluate first limit x→0 x sin 5x 5 = 5 lim multiply by x→0 5x 5 sin u = 5 lim use substitution u = 5x u→0 u = 5(1) = 5 (b) limx→−3 xsin(x+3) 2 +8x+15 SOLUTION: lim x→−3 sin(x + 3) sin(x + 3) = lim factor denominator x2 + 8x + 15 x→−3 (x + 3)(x + 5) sin(u) = lim use substitution u = x + 3 u→0 (u)(u + 2) sin u 1 = lim lim limit product rule u→0 u u→0 u + 2 1 1 = (1) = 2 2 2. Evaluate the derivatives dy/dx cos x (a) y = sin x+1 SOLUTION: Use the quotient rule with u = cos x, v=sin x + 1, so u0 = − sin x, v 0 = cos x. dy u0 v − v 0 u = dx v2 (− sin x)(sin x + 1) − (cos x)(cos x) = (sin x + 1)2 7-1 7-2 TA Discussion 7: September 23 (b) y = csc x using the quotient rule SOLUTION: First rewrite csc x = 1 sin x , so u = 1, v = sin x, u0 = 0, v 0 = cos x0 . dy u0 v − v 0 u = dx v2 (0)(sin x) − (cos x)(1) = sin2 x cos x =− 2 sin x cos x 1 =− sin x sin x = − cot x csc x cot x (c) y = 1+csc x SOLUTION: Quotient rule: u = cot x, v = 1 + csc x, u0 = − csc2 x, v 0 = − cot x csc x. dy u0 v − v 0 u = dx v2 (− csc2 x)(1 + csc x) − (− cot x csc x)(cot x) = (1 + csc x)2 cos x (d) y = x1+x 3 SOLUTION: Quotient rule with u = x cos x, u0 = −x sin x + cos x (by product rule), v = 1 + x3 , v 0 = 3x2 . dy u0 v − v 0 u = dx v2 (−x sin x + cos x)(1 + x3 ) − (3x2 )(x cos x) = (1 + x3 )2 3. Evaluate the following limit or state it does not exist. lim x→0 sin ax , where a and b are constants with b 6= 0 sin bx SOLUTION: sin ax sin ax abx lim = lim multiply by 1 x→0 sin bx x→0 sin bx abx a sin ax bx = lim lim limit product rule x→0 x→0 b sin bx ax sin u 1 v = a lim lim let u = ax, v = bx u→0 u b v→0 b sin v −1 a b sin v = (1) lim = evaluate limit and use limit exponent rule v→0 b v a = (1)−1 evaluate limit b 4. Find the following derivatives using the product rule d (sin2 x) dx d (sin3 x) dx d (sin4 x) dx TA Discussion 7: September 23 Make a conjecture about SOLUTION: 7-3 n d dx (sin x). See if you can prove it by induction! d d (sin2 x) = (sin x sin x) = (sin x cos x) + (cos x sin x) = 2 cos x sin x dx dx d d (sin3 x) = (sin x sin2 x) = (sin x(2 cos x sin x)) + (cos x sin2 x) = 3 cos x sin2 x dx dx d d (sin4 x) = (sin x sin3 x) = (sin x(3 cos x sin2 x)) + (cos x sin3 x) = 4 cos x sin3 x dx dx We may conjecture that d (sinn x) = n cos x sinn−1 x dx Proof by induction: d (sinn x) = n cos x sinn−1 x. We have already shown the base case for n = 2, 3, 4. Assume for n ≥ 2 that dx n+1 (n+1)−1 d We wish to show that dx (sin x) = (n + 1) cos x sin . d d (sinn+1 x) = (sin x sinn x) dx dx factor out a sin x d (sinn x)) product rule dx n n−1 = cos x sin x + sin x(n cos x sin x)invoke inductive hypothesis = (cos x sinn x) + (sin x = cos x sinn x + n cos x sinn x = (n + 1) cos x sin(n+1)−1 x Done! It’s worth noting that this is simply a special case of the Chain Rule, a very powerful rule for derivatives. d 5. Use the fact that cos(x + h) = cos(x) cos(h) − sin(x) sin(h) to prove that dx cos x = − sin x using the limit definition. SOLUTION: d cos(x + h) − cos x cos x = lim h→0 dx h cos(x) cos(h) − sin(x) sin(h) − cos x = lim h→0 h cos x cos h − cos x sin x sin h = lim − lim h→0 h→0 h h sin h cos h − 1 = cos x lim − sin x lim h→0 h→0 h h = cos x(0) − sin x(1) = − sin x
© Copyright 2026 Paperzz