8.3 Day2 Notes

Bell Work
Write the equation of a hyperbola centered at
(0, 0) that opens up and down.
Then, graph your equation.
Translations of Hyperbolas
Hyperbolas centered at (h,k)
Standard Equation
(π‘₯βˆ’β„Ž)2
π‘Ž2
βˆ’
(π‘¦βˆ’π‘˜)2
𝑏2
=1
(π‘¦βˆ’π‘˜)2
π‘Ž2
βˆ’
Pythagorean Relation
𝑐 2 = π‘Ž2 + 𝑏2
𝑏
±
π‘Ž
π‘Ž
±
𝑏
Asymptotes
y=
π‘₯βˆ’β„Ž +π‘˜
y=
(π‘₯βˆ’β„Ž)2
𝑏2
=1
π‘₯βˆ’β„Ž +π‘˜
Example
Sketch the hyperbola.
π‘₯2
16
βˆ’
(π‘¦βˆ’3)2
9
=1
Example
Find the center, vertices, and foci of the hyperbola.
(π‘₯ + 4)2 (𝑦 + 6)2
βˆ’
=1
16
25
Example – You Try
Find the center, vertices, and foci of the hyperbola.
(𝑦 βˆ’ 1)2 (π‘₯ + 5)2
βˆ’
=1
64
25
Example
Find an equation in standard form for the
hyperbola that satisfies the given conditions.
Transverse axis endpoints (2,3) and (2,-1),
conjugate axis length 6
Example
Find an equation in standard form for the
hyperbola that satisfies the given conditions.
Transverse axis endpoints (-1,3) and (5,3), slope
of one asymptote 4/3
Homework
8.3 (pg. 609) #9,10,15,16,32,33,40,42