AP Calculus Summer Packet Name (Print) _______________________________ Year End Grade for Honors Pre-Calculus (Number)_____________ MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Find an equation for the vertical line and the horizontal line through the given point. 1) 5, - 1 7 A) x = 5 y=- 1 7 2) ( 3) (0, 7, 1.3) A) x = - 7 y = -1.3 3) A) x = 0 y= B) x = - 5 y=- 1 7 C) x = 5 y =-7 D) x = - 1 7 B) x = 1.3 D) x = -1.3 7 C) x = 7 y = 1.3 3 C) x = y =0 D) x = 3 y =0 y= B) x = 0 3 4) (-π, 0) A) x = π y =0 y=- B) x = 0 y= π y=5 3 y=- 7 C) x = -π y =0 D) x = 0 y = -π C) y = -x - 2 D) y = x + 2 C) y = - 2 x + 1 5 7 D) y = - 2 x - 7 5 7) Passes through (-6, -5) and has slope 0 A) x = -6 B) y = -5 C) x = -5 D) y = -6 8) Passes through (-3, -6) and has no slope A) y = -6 B) x = -6 C) x = -3 D) y = -3 Write an equation for the line described. 5) Passes through (5, 3) with slope 1 A) y = x + 8 B) y = x - 2 6) Passes through (5, 5) with slope - 2 5 A) y = - 2 x + 7 5 B) y = - 5 x - 1 2 7 1 9) Passes through (7, -3) and (-1, 6) A) y = 9 x + 39 B) y = - 9 x + 39 8 8 8 8 10) Passes through (-5, 0) and (6, 8) A) y = - 5 x - 7 B) y = 5 x - 7 2 2 C) y = 10 x + 32 7 7 D) y = - 10 x + 32 7 7 C) y = - 8 x + 40 11 11 D) y = 8 x + 40 11 11 C) y = 5 D) y = 1 x + 5 2 C) y = 1 x + 3 3 D) y = 1 x - 3 3 11) Has slope 1 and y-intercept 5 2 A) y = 2x + 5 B) y = 1 x - 5 2 12) Has y-intercept -3 and x-intercept 1 A) y = 3x - 3 B) y = 3x + 3 13) Passes through (-5, -3) and is parallel to the line 8x + 7y = -19 A) y = 5 x - 19 B) y = - 8 x - 61 C) y = 8 x + 61 7 7 7 7 7 7 D) y = - 7 x - 3 8 8 14) Passes through (5, -1) and perpendicular to the line -7x + 8y = -43 A) y = - 8 x + 33 B) y = - 8 x C) y = - 7 x + 33 7 7 7 8 D) y = 8 x + 33 7 7 Find the slope and the y-intercept of the line. 15) 4x - 5y = -18 A) m = - 5 ; y-intercept: (0, -5) 4 B) m = 4 ; y-intercept: 0, 18 5 5 C) m = - 4 ; y-intercept: (0, -18) 5 D) m = 5 ; y-intercept: 0, 18 4 5 16) x + 2y = 3 A) m = 1 ; y-intercept: (0, 6) 2 B) m = 2; y-intercept: (0, 6) C) m = - 1 ; y-intercept: 0, 3 2 2 D) m = -2; y-intercept: (0, 0) 17) 3x - 5y = -25 A) m = 0; y-intercept: (0, 3) B) m = 3 ; y-intercept: (0,5) 5 C) m = 3 ; y-intercept: (0, -25) 5 D) m = -3; y-intercept: (0, -5) 2 18) 4y + 2x = 4 A) m = - 1 ; y-intercept: 0, 1 2 B) m = 1 ; y-intercept: (0, 0) 2 C) m = 4; y-intercept: (0, 0) D) m = -2; y-intercept: (0, 4) Solve the problem. 19) Ten students in a graduate program were randomly selected. Their grade point averages (GPAs) when they entered the program were between 3.5 and 4.0. The following data were obtained regarding their GPAs on entering the program versus their current GPAs. Find the linear regression equation for the data. Entering GPA (x) 3.5 3.8 3.6 3.6 3.5 3.9 4.0 3.9 3.5 3.7 A) y = 0.497x + 5.81 Current GPA (y) 3.6 3.7 3.9 3.6 3.9 3.8 3.7 3.9 3.8 4.0 B) y = 0.0313x + 3.67 C) y = 0.0212x + 4.91 D) y = 0.329x + 2.51 20) A study was conducted to compare the average time spent in the lab each week versus course grade for computer students. The results are recorded in the table below. Find the linear regression equation for the data. Number of hours spent in lab (x) 10 11 16 9 7 15 16 10 A) y = - 1.86x + 88.6 Grade (percent)(y) 96 51 62 58 89 81 46 51 B) y = 44.3x + 0.930 C) y = 0.930x + 44.3 D) y = 88.6x + 1.86 21) Two separate tests are designed to measure a student's ability to solve problems. Several students are randomly selected to take both tests and the results are shown below. Find the linear regression equation for the data. Test A (x) 48 52 58 44 43 43 40 51 59 Test B (y) 73 67 73 59 58 56 58 64 74 A) y = 0.930x + 19.4 C) y = - 0.930x - 19.4 B) y = - 19.4x + 0.930 D) y = 19.4x - 0.930 3 22) Find an equation for the least squares line representing weight, in pounds, as a function of height, in inches, of men. Then, predict the weight of a man who is 68 inches tall to the nearest tenth of a pound. The following data are the (height, weight) pairs for 8 men: (66, 150), (68, 160), (69, 166), (70, 175), (71, 181), (72, 191), (73, 198), (74, 206). A) 165.1 pounds B) 151.4 pounds C) 160.0 pounds D) 161.2 pounds Find the formula for the function. 23) Express the perimeter of a square as a function of the square's side length x. A) P(x) = 6x B) P(x) = 3x C) P(x) = 4x 2 D) P(x) = x3 24) Express the area of a square as a function of its side length x. A) A(x) = 4x B) A(x) = x2 C) A(x) = x4 D) A(x) = 2x 25) Express the length d of a square's diagonal as a function of its side length x. A) d(x) = x 3 B) d(x) = x C) d(x) = 2x D) d(x) = x 2 26) Express the perimeter of an isosceles triangle with side lengths x, 5x, and 5x as a function of the side length. A) P(x) = 11x B) P(x) = 10x C) P(x) = 25x3 D) P(x) = 10x3 27) Express the area of a circle as a function of its radius r. A) A(r) = πr B) A(r) = 2πr C) A(r) = πr2 28) Express the volume of a sphere as a function of its radius r. A) V(r) = 4 πr3 B) V(r) = 2 πr2 C) V(r) = 3 πr3 3 3 4 Find the domain and range. 29) y = x2 - 10 A) Domain: [0, ∞), Range: (-∞, -10] C) Domain: (-∞, ∞), Range: [-10,∞) D) V(r) = πr3 B) Domain: (-∞, ∞), Range: (-∞, ∞) D) Domain: [-100,∞), Range: [-10,∞) 30) y = 3 - x A) Domain: [0,∞), Range: (-∞,3] C) Domain: (-∞,3], Range: (-∞, ∞) 31) y = D) A(r) = πr3 B) Domain: (-∞, ∞), Range: (-∞,3] D) Domain: (-∞,0], Range: [3,∞) -1 x+1 A) Domain: [1,∞), Range: (-∞,∞) C) Domain: (-1,∞), Range: (-∞,0) B) Domain: [0,∞), Range: (-∞,∞) D) Domain: (-∞,-1), Range: (0,∞) 32) y = 8 + x A) Domain: (-∞, ∞); Range: y ≥ [-8, ∞) C) Domain: (-∞, ∞); Range: (-∞, ∞) B) Domain: [-8, ∞); Range: [0, ∞) D) Domain: : [0, ∞); Range: (-∞, ∞) 4 33) f(x) = 14 14 - x A) Domain: (-∞, B) Domain: (-∞, C) Domain: (-∞, D) Domain: (-∞, 14) ∪ (14, ∞); Range: (-∞, ∞) ∞); Range: (-∞, 0) ∪ (0, ∞) ∞); Range: (-∞, ∞) 14) ∪ (14, ∞); Range: (-∞, 0) ∪ (0, ∞) Determine if the function is even, odd, or neither. 34) y = (x + 8)(x - 7) A) Even B) Odd 35) y = -8 x2 - 9 A) Even 36) y = B) Odd C) Neither B) Odd C) Neither B) Odd C) Neither B) Odd C) Neither 7 x-1 A) Even 37) y = C) Neither 5x x2 - 9 A) Even 38) y = x2 - 3 A) Even 5 Graph the piecewise-defined function. x≤2 39) f(x) = 4 - x, 1 - 2x, x>2 A) B) y -10 -8 -6 -4 y 10 10 8 8 6 6 4 4 2 2 -2 2 4 6 8 10 x -10 -8 -6 -4 -2 -2 -2 -4 -4 -6 -6 -8 -8 -10 -10 C) 2 4 6 8 10 x 2 4 6 8 10 x D) y y 10 8 8 6 6 -10 -8 -6 -4 4 4 2 2 -2 2 4 6 8 10 x -10 -8 -2 -6 -4 -2 -2 -4 -4 -6 -6 -8 -8 -10 6 Find a formula for the function graphed. 40) y 8 6 4 2 -8 -6 -4 -2 2 4 6 8 x -2 -4 -6 -8 A) f(x) = 2, -2, x<0 x ≥0 B) f(x) = 2x, -2x, x≤0 x>0 C) f(x) = -2, 2, x≤0 x>0 D) f(x) = 2, -2, x≤0 x>0 B) f(x) = 4, -x, x<0 x ≥0 D) f(x) = 4, x, 41) y 8 6 4 2 -8 -6 -4 -2 2 4 6 8 x -2 -4 -6 -8 A) f(x) = 4, -4x, C) f(x) = 4, -x, x<0 x ≥0 x≤0 x>0 7 x<0 x ≥0 42) y 8 6 4 2 -8 -6 -4 -2 2 4 6 8 x -2 -4 -6 -8 A) f(x) = 2, 4 - x, x<0 x ≥0 B) f(x) = 2, 4 - x, x≤1 x>1 C) f(x) = 2, 4 - x, x<1 x>1 D) f(x) = 2, x - 4, x<1 x≥1 B) f(x) = 5 + x, -3 5 - x, -3 43) y 8 6 4 2 -8 -6 -4 -2 2 4 6 8 x -2 -4 -6 -8 A) f(x) = C) f(x) = 5 + x, -3 5 - x, -3 x≤2 x>2 x≤2 x>2 D) f(x) = 8 x<2 x>2 x<2 x ≥2 44) y 8 6 4 2 -8 -6 -4 -2 2 4 6 8 x -2 -4 -6 -8 A) f(x) = -2x, x + 2, x≤1 x>1 C) f(x) = x, 2x + 1, x≤1 x>1 B) f(x) = -2x, x + 1, x≤1 x>1 D) f(x) = 2x, x + 1, x≤1 x>1 45) y 8 6 4 2 -8 -6 -4 -2 2 4 6 8 x -2 -4 -6 -8 A) f(x) = x, 6 - x, 0≤x≤3 3<x≤6 B) f(x) = 6 - x, x, 0≤x≤3 3<x≤6 C) f(x) = x + 6, -x, 0≤x≤3 3<x≤6 D) f(x) = -x, x + 6, 0≤x≤3 3<x≤6 Solve the problem. 46) If f(x) = 4x 2 + 2x + 7 and g(x) = 2x - 4, find g(f(x)). A) 4x2 + 4x + 10 B) 8x2 + 4x + 10 C) 8x2 + 4x + 18 D) 4x2 + 2x + 3 47) If f(x) = 9x - 5 and g(x) = 3x2 + 2x - 6, find g(f(-3)). A) -166 B) 130 C) -194 D) 3002 9 48) If f(x) = 9x + 5 and g(x) = 2x2 + 3x - 7, find g(f(2)). A) 108 B) 68 C) 32 D) 1120 49) If (f∘g)(x) = 9x + 8 and g(x) = 3x - 1, find f(x). A) f(x) = 3x + 11 B) f(x) = 3x - 11 C) f(x) = 3x D) f(x) = 4x + 11 50) If (f∘g)(x) = 2 2x - 1 and f(x) = x + 8, find g(x). A) g(x) = 9x - 12 B) g(x) = 8x + 12 C) g(x) = 8x - 12 D) g(x) = 8x 51) If (f∘g)(x) = 16x + 1 and f(x) = 4x + 5, find g(x). A) g(x) = 4x B) g(x) = 4x - 1 C) g(x) = 4x + 1 D) g(x) = 3x - 1 52) If (f∘g)(x) = x - 2 and g(x) = A) f(x) = x2 - 6 C) f(x) = x2 D) f(x) = x2 + 6 53) If (f∘g)(x) = A) g(x) = x - 8, find f(x). B) f(x) = x2 +2x + 6 1 and f(x) = 1 , find g(x). x-7 x-7 x B) g(x) = x+4 C) g(x) = 2x - 4 D) g(x) = 2x 54) The table shows the mean annual compensation of elementary school teachers. Use the linear regression equation for the data to predict the teachers' average annual compensation in 2018. Year 1980 1984 1986 1990 1993 1995 1999 2002 A) $50,067 Annual Compenstaion (dollars) 15,738 18,122 20,049 24,813 27,295 29,367 32,724 34,981 B) $48,229 C) $50,985 10 D) $49,148 55) The table shows the total stopping distance of a sport utility vehicle as a function of its speed. Find the quadratic regression equation for the data. Speed (mph) 20 25 30 35 40 45 50 55 60 65 70 75 80 Average total stopping distance (ft) 47 61.5 78.5 97 122 149 180 216.5 254 298.5 350 408 473 A) y = 0.0890x2 + 1.9615x + 54.9201 C) y = 0.0890x - 1.9615 B) y = 0.0890x2 - 1.9615x + 54.9201 D) y = 54.9201x2 - 1.9615x + 0.0890 56) A box with an open top is to be constructed from a rectangular piece of cardboard with dimensions 11 inches by 30 inches by cutting out equal squares of side x at each corner and then folding up the sides as in the figure. Express the volume V of the box as a function of x. 30 11 A) V(x) = x(11 - 2x)(30 - 2x) C) V(x) = (11 - 2x)(30 - 2x) B) V(x) = (11 - x)(30 - x) D) V(x) = x(11 - x)(30 - x) 11 57) The figure shown here shows a rectangle inscribed in an isosceles right triangle whose hypotenuse is 2 units long. Express the area A of the rectangle in terms of x. -1 1 A) A(x) = x(1 - x) B) A(x) = 2x2 C) A(x) = 2x(x - 1) D) A(x) = 2x(1 - x) 58) A cone is constructed from a circular piece of paper with a 4-inch radius by cutting out a sector of the circle with arc length x. The two edges of the remaining portion are joined together to form a cone with radius r and height h, as shown in the figure. Express the volume V of the cone as a function of x. 4 in. 4 in. 2 A) V(x) = (8π - x)(16πx - x ) 24π2 2 16πx - x2 B) V(x) = (8π - x) 24π2 2 C) V(x) = (8π - x) 2 2 D) V(x) = (8π - x) (16πx - x ) 4π2 16πx - x2 4π2 12 59) A power plant is located on a river that is 650 feet wide. To lay a new cable from the plant to a location in a city 2 miles downstream on the opposite side costs $200 per foot across the river and $150 per foot along the land. Suppose that the cable goes from the plant to a point Q on the opposite side that is x feet from the point P directly opposite the plant. Write a function C(x) that gives the cost of laying the cable in terms of the distance x. 2 mi 650 ft A) C(x) = 200 x2 + 6502 + 150(10,560 - x) B) C(x) = 150 C) C(x) = 200 x2 + 6502 + 150(2 - x) D) C(x) = 200(650 - x) + 150(2 - x) Rewrite the exponential expression to have the indicated base. 60) 92x; base 3 A) 3-4x B) 34x x2 + 6502 + 200(10,560 - x) C) 35x D) 38x C) 3-5x D) 34x 2x 61) 1 ; base 3 9 A) 3-8x B) 3-4x Use your grapher to find the zero of the function. Round your answer to three decimal places. 62) f(x) = ex - 2 A) 0.803 B) 0.693 C) 1.993 63) f(x) = 6 - 2x A) 2.566 B) 2.551 C) 2.585 D) 0.592 D) 2.61 Solve the problem. 64) A certain radioactive isotope has a half-life of approximately 1250 years. How many years to the nearest year would be required for a given amount of this isotope to decay to 40% of that amount? A) 1652 years B) 921 years C) 750 years D) 1612 years 65) How long will it take for the population of a certain country to double if its annual growth rate is 5.8%? Round to the nearest year. A) 12 years B) 1 year C) 5 years D) 34 years 66) There are currently 80 million cars in a certain country, decreasing by 4.7% annually. How many years will it take for this country to have 51 million cars? Round to the nearest year. A) 72 years B) 3 years C) 10 years D) 6 years 13 67) Assume the cost of a car is $32,000. With continuous compounding in effect, find the number of years it would take to double the cost of the car at an annual inflation rate of 5.1%. Round the answer to the nearest hundredth. A) 13.59 B) 203.40 C) 2.03 D) 216.99 68) The population of a small country increases according to the function B = 2,300,000e0.04t, where t is measured in years. How many people will the country have after 2 years? A) 2,765,208 B) 2,491,560 C) 5,809,176 D) 2,522,893 Determine if the function is one-to-one. 69) y 10 5 -10 -5 5 10 x -5 -10 A) Yes B) No 70) y 10 5 -10 -5 5 10 x -5 -10 A) No B) Yes 71) y 10 5 -10 -5 5 10 x -5 -10 A) Yes B) No 14 72) y 10 5 -10 -5 5 10 x -5 -10 A) No B) Yes Find the inverse of the function. 73) f(x) = 4x + 9 2x + 8 A) f-1(x) = 2x - 4 -8x + 9 B) f1(x) = -8x + 9 2x - 4 C) f-1(x) = 4x + 9 2x + 8 D) Not a one-to-one function 74) f(x) = 6 x+5 A) f-1(x) = 75) f(x) = x 5 + 6x B) f-1(x) = 5 + 6x x C) f-1(x) = -5x + 6 x D) Not invertible 5x + 9 2 A) f-1(x) = x - 9 for x ≥ 0 5 2 B) f-1(x) = (x - 9) 5 C) f-1(x) = 2x - 9 5 D) f-1(x) = x2 - 9 for x ≥ 0 5 for x ≥ 0 76) f(x) = 3 x - 2 6 A) f-1(x) = 6(x + 2)3 C) f-1(x) = [6(x + 2)]3 77) f(x) = x 2 + 8, x ≥ 0 A) f-1(x) = - x - 8 B) f-1(x) = 18(x + 2) D) f-1(x) = 6(x3 + 2) B) f-1(x) = x-8 15 C) f-1(x) = x+8 D) f-1(x) = x-8 78) f(x) = 2x + 6 A) f-1(x) = x + 6 2 B) f-1(x) = x - 6 2 C) Not a one-to-one function D) f-1(x) = x - 6 2 79) f(x) = x 3 - 1 3 A) f-1(x) = x + 1 B) Not a one-to-one function 3 C) f-1(x) = x + 1 3 D) f-1(x) = x - 1 80) f(x) = 3x3 - 5 3 x-5 B) f-1(x) = 3 A) f-1(x) = 3 x + 5 3 C) f-1(x) = 3 x+5 3 D) Not a one-to-one function Solve the equation. 81) (5.53)t = 14 A) t = ln 13 ln 5.53 B) t = 14 ln 5.53 C) t = ln 14 ln 5.53 D) t = - ln 14 ln 5.53 C) t = 0.95 ln 3 D) t = 0.95 ln 3 82) e0.95t = 3 A) t = ln 3 0.95 B) t = ln 4 0.95 83) 3x + 3-x = 5 A) x = log3 7 ± 7 4 B) x = log3 C) x = log3 5 ± D) x = log 5 21 2 21 2 21 2 84) ex + e-x = 9 A) x = ln 9 ± B) x = - ln 9 ± 77 2 C) x = - ln (9 ± D) x = ln (9 ± 77) 85) ln y = 7t - 2 ; Solve for y. A) y = e7t - 2 C) y = e-7t + 2 B) y = 29t 16 77 2 77) D) y = - e8t - 1 86) ln (y + 4) - ln 8 = x + ln x ; Solve for y. A) y = 8xex - 4 B) y = 10xe-x - 5 C) y = xe4x + 8 D) y = xe8x + 4 Solve the problem. 87) How long will it take for the population of a certain country to triple if its annual growth rate is 2.5%? Round to the nearest year. A) 19 years B) 44 years C) 1 year D) 120 years 88) How long will it take for prices in the economy to double at a 12% annual inflation rate? A) 23.45 years B) 5.67 years C) 6.12 years D) 9.69 years 89) A college student invests $10,000 in an account paying 14% per year compounded annually. In how many years will the amount double? A) 7 years B) 8.4 years C) 5.3 years D) 9.6 years 90) Find a natural logarithmic regression equation for the following data and use it to estimate the production level for the year 1975. (For the regression equation, assume t = 0 is the year 1950.) Production Year (in millions) 1960 9.26 1970 51.43 1990 68.91 A) 50.2 B) 203.449167 C) 52.8 D) 66.8291429 91) Estimate the y-value associated with x = 35 as predicted by the natural logarithmic regression equation for the following data. x 10 20 30 40 y 1.51 2.88 3.71 4.36 A) 3.75 B) 3.55 C) 4.05 D) 4.25 Find the requested function value meeting all of the given conditions. 92) tan θ = - 1 and sin θ > 0; Find cos θ. A) - 2 B) 2 3 C) 2 2 2 D) - Find the exact value of the real number y. 93) y = sin-1 A) 3π 4 3 2 B) π 3 C) π 4 17 D) 2π 3 3 2 94) y = cos-1 2 2 A) π 6 B) 7π 4 C) 11π 6 D) π 4 95) y = cot-1 (-1) A) 7π 4 B) 3π 4 C) π 4 D) 5π 4 96) y = sin-1 (-0.5) A) π 3 B) - π 3 C) - π 6 D) π 6 97) y = arctan 1 A) π 3 B) 2π 3 C) π 4 D) 3π 4 B) -π C) π D) π 2 B) π 6 C) π D) - π 6 B) 3π 4 C) - π 4 D) π 4 B) π C) 2π D) π 4 B) π 4 C) π 3 D) - π 4 98) y = arcsec (1) A) 0 99) y = arcsin - 1 2 A) 4π 3 2 100) y = arccos - 2 A) 7π 4 101) y = csc-1(-1) A) - π 2 102) y = sin-1 A) π 2 2 2 18 Complete the identity. 103) sec x - 1 = ? sec x A) -2 tan2 x B) 1 + cot x C) sec x csc x D) sin x tan x B) sec x csc x C) -2 tan2 x D) 1 + cot x B) sin x tan x C) -2 tan2 x D) 1 + cot x B) 0 C) 1 D) 1 - sin x B) 1 C) 1 - sin x D) 0 B) 1 C) 0 D) 1 - sin x B) sin2 x + 1 C) cot2 x - 1 D) 1 B) sec2 x C) tan2 x D) cot3 x B) cot2 x C) sec2 x D) csc2 x B) sec4 x + 2 C) 4 sec4 x D) tan2 x - 1 B) sin x C) 1 D) 0 C) cot x D) 1 104) csc x(sin x + cos x) = ? A) sin x tan x 105) sin x + cos x = ? cos x sin x A) sec x csc x 106) (sin x + cos x)2 = ? 1 + 2 sin x cos x A) - sec2 x 107) 2 tan x - (1 + tan x)2 = ? A) - sec2 x 108) tan x(cot x - cos x) = ? A) - sec2 x 109) sin2 x + sin2 x cot2 x = ? A) cot2 x + 1 110) sin2 x + tan2 x + cot2 x = ? A) sin x 111) csc x cot x = ? sec x A) 1 112) sec4 x + sec2 x tan2 x - 2 tan4 x = ? A) 3 sec4 x - 2 113) cot x · tan x = ? A) -1 114) (cot x + 1)(cot x + 1) - csc2 x = ? cot x A) 0 B) 2 19 115) sin x - cos x + cos x - sin x = ? sin x cos x A) sec x csc x B) 2 + sec x csc x C) 2 - sec x csc x D) 1 - sec x csc x B) -1 C) sin2 x D) cos2 x B) 2 - sec x csc x C) 2 + sec x csc x D) sec x csc x B) 1 + 2sin2 x C) 1 - 2cos2 x D) 1 - 2sin2 x B) 1 C) 2 D) 0 C) sec2 2x D) 2 B) 0 C) cot x D) sin x B) csc x + cot x C) csc x - cot x + 1 D) csc x - cot x B) sec x + csc x C) sec 2 x + csc 2 x D) csc 2 x - sec 2 x B) cot α + tan β C) tan β + 1 D) cot α + tan α 2 2 116) sin x - cos x = ? 1 - cot2 x A) 1 117) cos x + sin x - sin x - cos x = ? cos x sin x A) 1 - sec x csc x 118) cos4 x - sin4 x = ? A) 1 + 2cos2 x 119) (sec x + 1)(sec x - 1) = ? tan2 x A) -1 120) tan2 2x + cos2 2x + sin2 2x = ? A) sin2 2x B) cos2 2x 121) 1 - cos2 x = ? 1 + sin x A) tan x 122) 1 - cos x = ? sin x A) -csc x - cot x 123) sec2 x csc 2 x = ? A) sec 2 x - csc 2 x 124) cos (α - β) = ? sin α cos β A) cot α + cot β 20 125) cos x - 5π = ? 6 A) - 2 3 (cos x - sin x) C) 1 (2 B) - 3 cos x + sin x) D) 2 2 3 (cos x + sin x) 3 (cos x - sin x) 126) sin x + 3π = ? 2 B) sin x C) -sin x D) -cos x 127) sin (α + β) + sin (α - β) = ? A) 2sin α cos β B) 2cos α cos β C) cos β cos α D) sin α cos β 128) cos (α + β) cos (α - β) = ? A) cos2 α - sin2 β B) sin2 β - sin2 α C) cos2 β - sin2 α D) cos2 β + sin2 α B) cot α - cot β C) tan α - tan β D) tan β - tan α A) cos x 129) sin (α - β) = ? cos α cos β A) -tan α - cot β 130) cos (α - β) = ? cos (α + β) A) 1 - tan α tan β 1 + tan (α + β) B) 1 - tan α tan β 1 + tan α tan β C) 1 + tan (α + β) 1 - tan α tan β B) cos2 2x - cos2 12x 4 D) 1 + tan α tan β 1 - tan α tan β 131) sin 5x sin 7x cos 5x cos 7x = ? A) cos2 12x + cos2 2x 4 2 C) sin 70x 4 D) cos2 70x 132) sin x (sin 4x + sin 6x) = ? A) 1 cos x (cos 4x - cos 6x) 2 B) cos x (cos 4x + cos 6x) C) 1 cos x (cos 4x + cos 6x) 2 133) D) cos x (cos 4x - cos 6x) sin 3x + sin 9x = ? cos 3x + cos 9x A) tan 3x + tan 9x B) tan 6x C) 2 tan 6x tan 3x 21 D) tan 6x cot 3x 134) cos 4x - cos 8x = ? cos 4x + cos 8x A) -tan 6x 135) C) cot 6x D) tan 2x tan 6x B) sin 12x cos 10x C) tan 5 x + tan 7 x 4 6 D) cos 12x sin 10x B) cot x - y 2 C) tan x + tan y D) tan x + y 2 sin 5x + sin 7x = ? cos 4x + cos 6x A) sin 6x cos 5x 136) B) 0 sin x + sin y = ? cos x + cos y A) tan x - y 2 BONUS. EACH TRIG IDENTITY PROOF IS WORTH 20 BONUS POINTS. THEY MUST BE COMPLETED NEATLY ON A SEPERATE SHEET OF PAPER WITH ALL WORK SHOWN. PROOFS MUST BE CLEAR AND USE PROPER TRIG IDENTITIES Verify the identity. 137) cot θ · sec θ = csc θ 138) tan θ · csc θ = sec θ 139) csc2u - cos u sec u= cot2 u 140) (1 + tan2u)(1 - sin2u) = 1 141) csc u - sin u = cos u cot u 142) 1 + sec2x sin2x = sec2x 143) cot 2 x + csc 2 x = 2 csc 2 x - 1 144) cos x + π = -sin x 2 145) sin 3π - θ = -cos θ 2 146) cos 3π - θ = -sin θ 2 22 147) cos(α + β) = cot β - tan α cos α sin β x-y 148) cos x + cos y = cot sin x - sin y 2 149) sin α - sin β = tan α - β cot α + β sin α + sin β 2 2 150) sin(α + β) - sin(α - β) = 2 cos α sin β 151) cos(α - β) - cos(α + β) = 2 sin α sin β 152) sin(α - β) cos(α + β) = sin α cos α - sin β cos β 23
© Copyright 2026 Paperzz