MATHEMATICS B1 Barbora Batíková VŠFS Praha [email protected] B.Batíková () 1/5 1 6. Differentiation of Functions of One Variable 6.2. l’Hospital’s rule B.Batíková () 2/5 6. Differentiation of Functions of One Variable 1 6.2. l’Hospital’s rule 6. Differentiation of Functions of One Variable 6.2. l’Hospital’s rule B.Batíková () 3/5 6. Differentiation of Functions of One Variable 6.2. l’Hospital’s rule Theorem (6.2. L’Hospital’s rule). B.Batíková () 4/5 6. Differentiation of Functions of One Variable Theorem (6.2. L’Hospital’s rule). If the limit lim x→c 6.2. l’Hospital’s rule f (x) g(x) is of the type ” B.Batíková () 0 ±∞ or ”, 0 ±∞ 4/5 6. Differentiation of Functions of One Variable Theorem (6.2. L’Hospital’s rule). If the limit lim x→c 6.2. l’Hospital’s rule f (x) g(x) is of the type ” 0 ±∞ or ”, 0 ±∞ then B.Batíková () 4/5 6. Differentiation of Functions of One Variable Theorem (6.2. L’Hospital’s rule). If the limit lim x→c 6.2. l’Hospital’s rule f (x) g(x) is of the type ” 0 ±∞ or ”, 0 ±∞ then lim x→c B.Batíková () f (x) f 0 (x) = lim 0 , g(x) x→c g (x) 4/5 6. Differentiation of Functions of One Variable Theorem (6.2. L’Hospital’s rule). If the limit lim x→c 6.2. l’Hospital’s rule f (x) g(x) is of the type ” 0 ±∞ or ”, 0 ±∞ then lim x→c f (x) f 0 (x) = lim 0 , g(x) x→c g (x) whenever the expression on the right hand side exists. B.Batíková () 4/5 6. Differentiation of Functions of One Variable 6.2. l’Hospital’s rule Example 1) lim x→0 sin x x , B.Batíková () 5/5 6. Differentiation of Functions of One Variable 6.2. l’Hospital’s rule Example sin x x , lim arcsin 2x , x→0 tan 3x 1) lim x→0 2) B.Batíková () 5/5 6. Differentiation of Functions of One Variable 6.2. l’Hospital’s rule Example sin x x , lim arcsin 2x , x→0 tan 3x 3x , lim 1−cos x2 x→0 1) lim x→0 2) 3) B.Batíková () 5/5 6. Differentiation of Functions of One Variable 6.2. l’Hospital’s rule Example sin x x , lim arcsin 2x , x→0 tan 3x 3x , lim 1−cos x2 x→0 3x lim e 2 , x→∞ x 1) lim x→0 2) 3) 4) B.Batíková () 5/5 6. Differentiation of Functions of One Variable 6.2. l’Hospital’s rule Example sin x x , lim arcsin 2x , x→0 tan 3x 3x , lim 1−cos x2 x→0 3x lim e 2 , x→∞ x 1) lim x→0 2) 3) 4) 5) lim x cot 2x, x→0+ B.Batíková () 5/5 6. Differentiation of Functions of One Variable 6.2. l’Hospital’s rule Example sin x x , lim arcsin 2x , x→0 tan 3x 3x , lim 1−cos x2 x→0 3x lim e 2 , x→∞ x 1) lim x→0 2) 3) 4) 5) lim x cot 2x, x→0+ √ 6) lim x ln x, x→0+ B.Batíková () 5/5 6. Differentiation of Functions of One Variable 6.2. l’Hospital’s rule Example sin x x , lim arcsin 2x , x→0 tan 3x 3x , lim 1−cos x2 x→0 3x lim e 2 , x→∞ x 1) lim x→0 2) 3) 4) 5) lim x cot 2x, x→0+ √ 6) lim x ln x, x→0+ 7) lim x→0+ 1 sin x − B.Batíková () 1 x , 5/5 6. Differentiation of Functions of One Variable 6.2. l’Hospital’s rule Example sin x x , lim arcsin 2x , x→0 tan 3x 3x , lim 1−cos x2 x→0 3x lim e 2 , x→∞ x 1) lim x→0 2) 3) 4) 5) lim x cot 2x, x→0+ √ 6) lim x ln x, x→0+ 7) lim x→0+ 1 sin x 1 x , ex ), − 8) lim (ln x − x→∞ B.Batíková () 5/5 6. Differentiation of Functions of One Variable 6.2. l’Hospital’s rule Example sin x x , lim arcsin 2x , x→0 tan 3x 3x , lim 1−cos x2 x→0 3x lim e 2 , x→∞ x 1) lim x→0 2) 3) 4) 5) lim x cot 2x, x→0+ √ 6) lim x ln x, x→0+ 7) lim x→0+ 1 sin x 1 x , ex ), − 8) lim (ln x − x→∞ 9) lim x 2x . x→0+ B.Batíková () 5/5
© Copyright 2026 Paperzz