• Wave propagation • Hooke’s law • Newton’s law • Þ wave equation • Wavefronts and Rays • Interfaces • Reflection and Transmission coefficients body waves P-waves (longitudinal, compressional) S-waves (shear, transverse) SV-wave SH-wave Body waves: Different kind of waves • Longitudinal waves (P-waves) 12 3 4 5 • Transversal waves (S-waves) 1 2 34 5 Examples of different waves Elektromagnetic spectrum 100 Earthquake, audible + seismic AM, FM, Georadar, 106 Visible, Acoustic spectrum Frequency X-ray 1019 Hz Surface waves Rayleigh-waves Love-waves z z D D z D r rD 2 2 z D z ¶ ¶ ¶2 r 2 ¶ z z z z k D z kD D z z ¶ ¶ z k D ¶ ¶ ¶ ¶ ¶2 r 2 ¶ z k z ¶ ¶ ¶ ¶ ¶2 r 2 ¶ z k z d d(z) is the Dirac function ¶2 ¶ 2 2 ¶2 ¶2 2 ¶ r 2 ¶ rk -1/2 d Propagation of seismic waves (Roth et al., 1998) Object detection using WAVES: Object detection using WAVES Source B Receiver O • Wavefronts indicate the boundary of the material which already moves and the material which is still undisturbed. • Rays are plotted perpendicular with respect to the wavefronts and describe the dominant propagation of the seismic energy between two locations Geometrical Wave propagation Source Source Receiver Rays are perpendicular to the wavefronts, a1 a2 v1 v2 Angle of incidence = angle of reflection a1 = a 2 Interface: Refraction a1 v1 v2 a2 a2 sin a1 v1 ----------- =----sin a2 v2 v2 > v1 v2 < v1 Special case: critical angle a1 a2 = 90° v1 v2 a2 sin a1 v1 ---------=sin a1= ----sin 90° v2 Interface: Conversion from P wave to S wave b1 a1 vp1,vs1 vp sin a 1 1 --------------- = --sin b1 vs 1 vp2,vs2 b2 vp sin a 1 1 -------------- = --sin b2 vs 2 vp a1 vp a2 a3 1 vs 1 2 vs 2 vp vs 3 3 a1 a2 a3 sin a sin b sin a2 sin b2 sin bn ------ 1= --------1 = ---------= -------------= --------= p = constant vp vs vp vs vs 1 1 2 2 n p = Slowness Refraction caused by place dependent propagation velocity Propagation of seismic waves (Roth et al., 1998) Transmission- and Reflection coefficients E ER E = ER + ET v1, r1 v2, r2 ET E = Energy R = Reflection coefficient T = Transmission coefficient R+T=1 Zoeppritz’s equations at normal incidence Reflection coefficient R v1 , r1 v 2 r 2 – v1 r 1 Z2 – Z1 = --------------= ------------------------------R v2 r2 + v 1 r1 Z2 + Z1 v 2 , r2 T Transmission coefficient 2v 1 r1 2Z 1 -------------------T = ---------------- = ----------v 2r 2 + v1 r1 Z 2 + Z1 with Z = v r = acoustic Impedance Angle-dependent reflection- and transmission-coefficients (Sheriff and Geldart, 1995)
© Copyright 2026 Paperzz