Class VIII Chapter 1: Rational Numbers Q1. Add and . Q2. Find 50

Class VIII
Chapter 1: Rational Numbers
Q1. Add and .
Q2. Find 50 rational numbers between
and .
Q3. Fill in the blank and solve
2
5 −5
−2 5
− × ×
=
× ×−−−−−−−
3
7
8
3
7
Q4. What should be subtracted from to get ?
Q5. Divide
a)
b)
by
by
Q6. Divide the sum of
and
by the product of
Q7. The product of two rational numbers is
and
.
. If one of the numbers is
, find the other.
Q8. Express in the form .
−3 1
−7
5
+ + +4+
4
2
3
6
Chapter 1: Rational Numbers
Answer key
Q1. Q2. − , − , … … … … . Q3. Q4. − VIII_assign_2014-15
Page 1
Q5.
a)
b) −
Q6. − Q7.
Q8. Chapter 2: Linear Equations in One Variable
"
"
"
Q1. Solve + − = 5 and check the solution.
Q2. Solve # − $# −
Q3. Solve
"
%=
'"(&'"(
'"(
"&
=−
−3
Q4. A two digit number is such that the sum of its digits is 4. If 18 is added to the number, its
digits are reversed. Find the number.
Q5. One third of a block of sheep went to the forest. Two fifth of the total were grazing in the
field and the remaining 12 were on the river bank. Find the total number of sheep.
Q6. In a wedding party, there are 990 persons. If the number of women is four times the
number of men and the number of men is twice the number of children, how many men are
there in the party?
Q7. The sum of two numbers is 2170, If 2.5% of one number is equal to 4.5% of the other, find
the two numbers.
Q8. A shopkeeper sells a school bag for ` 630. On doing so, He suffers a loss of 10%. Find
the cost price of the school bag.
VIII_assign_2014-15
Page 2
Chapter 2: Linear Equations in One Variable
Answer key
Q1. # = 12
Q2. # = −10
Q3.# = 0
Q4. Number is 13
Q5. 45
Q6. 180
Q7. 1395 and 775
Q8. ` 700
Chapter 3: Understanding Quadrilaterals
Q1. One of the angles of a triangle is 1200 and other two angles are equal. Find the measure
of the equal angles.
Q2. Three angles of a quadrilateral are in the ratio 3:5:7. The difference of the least and the
greatest of these angles is 76 find all the four angles of the quadrilateral.
Q3. An angle of a parallelogram is of measure 850. Find all the angles of the parallelogram.
Q4. PQRS is a rectangle. Diagonals PR and QS meet at point O. If OP = 2x + 4, OS = 3x = 1,
find # and QS.
Q5. Fill in the blanks
a)
b)
c)
d)
e)
.
A polygon with seven sides is called
Diagonals of a rhombus are
to each other.
.
A polygon with least number of sides is a
.
A parallelogram with adjacent sides equal is
An octagon has
sides.
Q6. In the given trapeziums, find the value of # and ..
VIII_assign_2014-15
Page 3
a)
b)
Q7. ABCD is a parallelogram in which ∠012 = 75° and ∠127 = 65°. Find ∠172 and ∠102.
Q8. The measures of angles of a hexagon are #°, '# − 5(°, '2# − 5(°, '2# + 20(° find the value
of #.
Chapter 3: Understanding Quadrilaterals
Answer key
Q1. −30°
Q2. −57°, 95°, 133°, 9:; 75°
VIII_assign_2014-15
Page 4
Q3. ∠1, ∠7 = 85°
∠2, ∠0 = 95°
Q4. # = 3
Q5.
a)
b)
c)
d)
e)
Heptagon
Perpendicular
Triangle
Square
8
Q6.
a) . = 90< ; # = 50<
b) # = 70< ; . = 130<
Q7.∠172 = 75< ; ∠102 = 65<
Q8.# = 118.2<
Chapter 4: Practical Geometry
Q1. Construct a rhombus PURE with side PU = 5.2m and diagonal PR = 6.8cm
Q2. Construct a quadrilateral RUBY in which RU = 5.5m, UB = 2.6cm, BY = 4.2cm, diagonal
RB = 6.8cm and diagonal UY = 5.2cm.
Q3. Construct a quadrilateral SNOW in which SN = 3.7cm, NO = 4.5cm, OW = 5cm, sw = 7cm
and ∠H = 90°.
Q4. Construct a quadrilateral ROME in which RO = 4cm, OM = 6cm, ME = 5cm, ∠O =
100°, ∠M = 80° .
Q5. Construct a rectangle DROP in which DR = 6cm and diagonal DO = 7.4cm.
Q6. Construct a rhombus MAST in which MA = 7.4cm and ∠M = 75°.
VIII_assign_2014-15
Page 5
Chapter 5: Data Handling
Q1. The ages of 25 patients who visited a dentist are given below. Prepare a frequency
distribution of the data.
34, 35, 39, 38, 4, 9, 15, 26, 12, 13, 25, 32, 3, 12, 39, 14, 12, 12, 24, 8, 21, 16, 5, 12, 30
a) What is age of the youngest patient?
b) What is the age of patients who visited the dentist maximum number of times?
c) How many patients are above 30 years of age?
Q2. Given below is the frequency distribution for relative humidity. Draw a bar graph to
represent the data.
Relative
humidity (in %)
Frequency
40 − 50
50 − 60
60 − 70
70 − 80
80 − 90
24
50
36
62
27
Q3. Parties P, Q, R and S contested elections. Their shares in votes polled are shown in the
pie chart.
Now answer the following questions:a) If in all 36,600 votes were polled, how many votes were obtained by parties P and Q?
b) Which party got the maximum number of votes?
c) Which party got the minimum number of votes?
Q4. There are 900 creatures in a zoo as per the table given below:Kind of Creatures
Birds
Reptiles
Beasts
Water Animal
No. of Creatures
125
50
150
175
VIII_assign_2014-15
Other land
Animals
400
Page 6
Represent the above data in a pie chart.
Q5. Paste examples of Data handling using various types of graphs from your day to day life
experiences.
Chapter 5: Data Handling
Answer key
Q3. N = 90<
Chapter 6: Square and Square roots
Q1. Show that 10,368 is not a perfect square
Q2. Find the smallest number by which 76,800 should be divided to make it a perfect square.
Q3. Without adding find the following sum
1 + 3 + 5 + 7 + 9 + 11 + 13 + 15 + 17
Q4. Find the smallest number by which 14,450 should be multiplied to make it a perfect
Square. Find the square root of the perfect square so obtained.
Q5. Find the smallest number by which 8,820 should be divided to make it a perfect square.
Find the square root of the perfect square so obtained.
Q6. The product of two numbers is 256. If one number is 4 times the other, find the numbers.
Q7. The area of a square park is 7 O. Find the side of the park.
Q8. Find the least number that must be subtracted from 4,568 to make it a perfect square. Also
find the square root of the resulting number.
Chapter 6: Square and Square roots
Answer key
Q2. 3
Q3. 81
Q4. Smallest no – 2, Square root – 170
VIII_assign_2014-15
Page 7
Q5. Smallest no – 5, Square root – 42
Q6. 32 and 8
Q7.
O
Q8. Smallest no – 79, Square root – 67
Chapter 7: Cubes and Cube Roots
Q1. What is smallest number by which 3,456 must be multiplied to make it a perfect cube?
Q2. What is the smallest number by which 2,160 should be divided to make it a perfect cube?
Q3. Find the volume of a cubical box whose edge is 16cm.
Q4. Show as the cubes of a rational number.
Q5. Find the cube roots of 64 × 125.
Q6. Three numbers are in ratio 1:2:3. The sum of their cubes is 0.098784. find the numbers.
Q7. Find the cube root of 216 by the method of successive subtraction.
Q8. Find the cubes of:
a) 2 b) − Chapter 7: Cubes and Cube Roots
Answer key
Q1. 4
Q2. 10
Q3. 4,096 cm3
Q4. $ %
Q5. 20
VIII_assign_2014-15
Page 8
Q6. 0.14, 0.28 and 0.42
Q7. 6
Q8.
a)
b)
Chapter 8: Comparing Quantities
Q1. Rajat sells a toy for Rs. 650, gaining of its cost price. Find his gain percent.
Q2. By selling a television set for Rs. 4,500 a dealer suffers a loss of 10%. Find the cost price
of the television.
Q3. By selling 33 oranges, a fruit seller gains the selling price of 11 oranges. Find the profit
percent.
Q4. Find the discount percent if the M.P. is Rs. 2,700 and S.P. is Rs. 2,160.
Q5. Sumita bought a saree for Rs. 3,630 including 10% VAT. Find the printed price (without
VAT) of the saree.
Q6. Find the difference in the simple interest and the compound interest on Rs. 625 for 2 years
at the rate of 4% per annum.
Q7. Find the compound interest on Rs. 50,000 for 2 years at the rate fo 8% per annum
compounded half yearly.
Q8. Find the marked price if the S.P. is Rs. 552.50 and discount % is 15%.
Chapter 8: Comparing Quantities
Answer key
Q1. 20%
Q2. Rs. 5,000
Q3. 50%
Q4. 20%
VIII_assign_2014-15
Page 9
Q5. 3,300
Q6. Rs. 1
Q7. Rs. 8,492.93
Q8. Rs. 650
Chapter 9: Algebraic Expressions and Identities
Q1. Add P # − # + Q , P # + # − # + Q and P # − # − 2Q
Q2. Subtract 9 − 9 + 9 + from
RS
− 9 + + 9
Q3. Subtract '2# + 9#. − 4# + 3( from '5#. − 6# + 7# − 9(
Q4. Multiply − TU V by −
TUV.
Q5. Find the product '−39 ( × '−59 ( × '−49 (
Q6. Solve '79 W ( × '9 + W(
Q7. Find the value of a if 59 = 30 − 25
Q8. Find the product using suitable identities:
6
6
− T + U − T − U 7
7
Chapter 9: Algebraic Expressions and Identities
Answer key
Q1. 5# +
# − #
R
Q2. 9 − 9 − − Q3. '−4#. − 8# + 11# − 12(
Q4. 6T U V Q5. −609
VIII_assign_2014-15
Page 10
Q6. 79 W + 79 W Q7. a = 55
Q8. T − U Chapter 10: Visualizing Solid Shapes
Q1. Draw and paste nets for the following solids
a) Cube
b) Cuboid
Q2. Mention the defining features of each of the following geometrical shapes also draw a
figure for each of them
a)
b)
c)
d)
e)
f)
Cuboid
Cube
Regular Polyhedron
Convex Polyhedron
Prism
Pyramid
Q3. What is Eular`s formula, express it mathematically.
Q4. Using Euler`s formula find the missing numbers:
Faces
6
?
Edges
8
10
Vertices
?
15
Q5. Give examples of each of the following shapes from your surroundings:a) Sphere
b) Cylinder
c) Prism
Q6. Draw a map of your Class Room, School, Residential, and Society. [Any two]
Q7. Make a tabular representation of the following 2-Diminsional shapes matching with their
3D.
a) Square
VIII_assign_2014-15
Page 11
b) Rectangle
c) Circle
d) Triangle
Chapter 10: Visualizing Solid Shapes
Answer key
Q4.
Faces
6
7
Edges
8
10
Vertices
12
15
Chapter 11: Mensuration – I
Q1. The length and breadth of a rectangular field are in the ratio 7:4. A path 4m wide running
all around outside it has an area of 416 m2. Find the dimensions of the field.
Q2. The sides of two squares are in the ratio 4:5. Find the ratio of their areas.
Q3. The ratio of the length of parallel sides of a trapezium is 3:5. The distance between them is
12cm. if the area of the trapezium is 720 cm2, find the length of parallel sides.
Q4. The area of a rhombus whose diagonals are # XO and 12 XO is 24 XO . What is the value
of # for the given rhombus?
Q5. Find the area of a trapezium whose parallel sides are 36 cm and 12 cm and the non
parallel sides are 15 cm each.
Q6. A box is 2m long, 90 cm wide and 70 cm high. How many soap cakes can be put in it if
each cake measures 5 cm by 4 cm by 20cm?
Q7. Find the total surface area, lateral surface area and length of the diagonal of a cuboid of
dimensions 10 XO × 0.8 ;O × 5 XO.
Q8. A Solid Cylinder has total surface area of 223.38 cm2. Its curved surface area is one-third
of its total surface area. Find the volume of the cylinder.
Q9. The rainwater which falls on a roof of area 297 m2 is to be stored in a cylindrical tank 8m in
diameter. If it rains 10cm in day, what is the rise in the level in the tank due to it.
VIII_assign_2014-15
Page 12
Chapter 11: Mensuration – I
Answer key
Q1. Y = 28O, W = 16O
Q2. 16:25
Q3. 45XO & 75XO
Q4. 4XO
Q5. 216 cm2
Q6. 31,500
Q7. 13.75 cm
Q8. 184.877 cm3
Q9. 59 cm
Chapter 12: Exponents and Powers
Q1. Simplify and write the result in the form .
7 2 − × − 6
7
Q2. Simplify PQ
+ PQ
+ PQ
Q3. By what number should P Q be multiplied to get the product as 15?
Q4. By what number should P Q
be divided to get the quotient as P
Q ?
Q5. Simplify and write in exponential form:
3 − × '24(
8
Q6. By what number should PQ
VIII_assign_2014-15
be multiplied to get the product as '10(?
Page 13
Q7. Find the reciprocal of PQ
÷ PQ
Q8. Find the value of # if
2 −2 "&
2 − × − = 5
5
5
Chapter 12: Exponents and Powers
Answer key
Q1.
,,
Q2. 29
Q3. 135
Q4. − Q5. '−9(
Q6. Q7. PQ
Q8. # = 2
Chapter 13: Direct and Inverse Proportions
Q1. If 7 women or 5 men earn Rs. 875 in a day. How much will 5 women and 10 men earn In
one day.
Q2. The price of bananas is Rs. 30 a dozen. Aditya can buy 12 dozen bananas with the
amount of money he has. If the price of bananas is increased by Rs. 10 a dozen, how many
dozen bananas can Aditya buy.
Q3. Shyam undertook the construction of a 9 km bridge in one month. He has 42 workers who
can complete the construction of 2 km of the bridge in one month. How many more workers
should he employ?
VIII_assign_2014-15
Page 14
Q4. 10 men and 15 women can complete, a piece of work in 8 days: 12 men and 6 26 women
can complete the same work in 6 days. How long will 6 men and 13 women take to do it?
Q5. A pipe can fill a cistern in 5 hours. The cistern can be emptied by an outlet pipe in 6 hours.
How much time will it take to fill the cistern if both the pipes are opened tare their.
Q6. The distance between two cities on a map is 8.4 cm. the map used 3 cm to represent 16
km. What is the actual distance between two cities.
Q7. Which of the following show direct variation
a) Distance travelled and time taken for covering the same.
b) The number of students and the fees paid by them.
c) No. of workers and time taken to complete a given task.
\]
Q8. X can do P Q
of a work in 10 days, Y can do 40% of the work in 15 days and Z can do
of the work in 13 days. Who will complete the work first?
Chapter 13: Direct and Inverse Proportions
Answer key
Q1. Rs. 2375
Q2. 9
Q3. 147
Q4. 12 days
Q5. 30 hours
Q6. 44.8 Km
Q7.
a) Direct
b) Direct
c) Inverse
Q8.Y will complete the work first
VIII_assign_2014-15
Page 15
Chapter 14: Factorisation
Q1. Factorize the following:5'3# − 4( + 7'3# − 4(
Q2. Factorize '2# + .('5# − 3.( − '# + .('5# − 3.(
Q3. Factorize the following:# . − # . Q4. Factorize:- # − 21# + 110
Q5. Divide '4# + 29# + # + 20( by '# + 5(
Q6. What must be subtracted from '# − 9# − 12( so that the resulting polynomial is exactly
divisible by # + 3?
Q7. Find the value of panel q so that '2# + 10# + 6# + # + T# + U( is exactly divisible by
'2# + 1(
Q8. Factorize:
10# − 83# − 17
Chapter 14: Factorisation
Answer key
Q1. 12'3# − 4(
Q2. #'5# − 3.(
Q3. # . '# + . ('# + . ('# + .('# − .(
Q4. '# − 11('# − 10(
Q5. # − # + 5# + 4
Q6. −12
Q7. T = 5 9:; U = 3
Q8. '5# + 1('2# − 17(
VIII_assign_2014-15
Page 16
Chapter 15: Introduction to Graphs
Q1. Draw a graph to represent the relation between area of a square and the side x of the
square
Side of square(cm)
Area (cm2)
1
1
2
4
3
9
4
16
Q2. A car travelled for 14 hours, starting at 4:00 hours the speed of the car at different hours is
given below:Time
Speed (kmph)
4:00
35
6:00
50
8:00
60
10:00
70
12:00
80
14:00
60
Q3. Plot the following points on a graph paper:N'1,2(, ^'5,2(, _'6,5( and `'2,5(. Join these points in mention the figure you get.
Q4. Write the quadrants in which the following points lie:a)
b)
c)
d)
'−4,7(
'3,5(
'6, −8(
'0,0(
Chapter 16: Playing with Numbers
Q1. Find A and B in the addition.
a
a
a
a)
&
&
b
b)
a b
a b b Q2. Find A and B in the Multiplication
1 2
× 6
2 2 2
Q3. Write and learn all divisibility rules [i.e. by 2, 3, 4, 5, 6, 8, 9, 10, and 11].
Q4. If 31z5 is a multiple of 3, where z is a digit. What might be the value of z
VIII_assign_2014-15
Page 17
Chapter 16: Playing with Numbers
Answer key
Q1.
a) 1 = 6; 2 = 1
b) 1 = 4; 2 = 7
Q2. 1 = 7; 2 = 4
Q4. 0, 3, 6, 9 either of them
VIII_assign_2014-15
Page 18