CHAPTER 71 NUMERICAL INTEGRATION EXERCISE 280 Page 759 1. Evaluate using the trapezoidal rule, giving the answers correct to 3 decimal places: ∫ Since ∫ 2 dx 0 1 + x2 1 (use 8 intervals) 2 1− 0 = 0.125 d x , width of interval = 0 1 + x2 8 1 x 2 1 + x2 0 0.125 2.0000 0.250 0.375 0.500 0.625 0.750 0.875 1.000 1.9692 1.8824 1.7534 1.6000 1.4382 1.2800 1.1327 1.0000 Hence, using the trapezoidal rule ∫ 2 dx 0 1 + x2 1 1 ≈ (0.125) ( 2.0000 + 1.0000 ) + 1.9692 + 1.8824 + 1.7534 + 1.6000 + 1.4382 + 1.2800 + 1.1327 2 = 0.125[12.5559] = 1.569 2. Evaluate using the trapezoidal rule, giving the answers correct to 3 decimal places: ∫ 3 1 Since ∫ 3 1 2 ln 3 x d x , width of interval = x 2 ln 3x (use 8 intervals) 2 ln 3 x d x 3 −1 = 0.25 8 1 1.25 1.50 1.75 2.0 2.25 2.50 2.75 3.0 2.1972 2.6435 3.0082 3.3165 3.5835 3.8191 4.0298 4.2204 4.3944 Hence, using the trapezoidal rule ∫ 3 1 2 ln 3 x d x 1 ≈ (0.25) ( 2.1972 + 4.3944 ) + 2.6435 + 3.0082 + 3.3165 + 3.5835 + 3.8191 + 4.0298 + 4.2204 2 = 0.25[27.9168] = 6.979 1120 © 2014, John Bird 3. Evaluate using the trapezoidal rule, giving the answers correct to 3 decimal places: ∫ π /3 0 (sin θ ) d θ (use 6 intervals) π ∫ Since π /3 0 −0 π 3 = or 10° (sin θ ) d θ , width of interval = 6 18 θ sin θ 0 0 π/18 0.4167 2π/18 3π/18 4π/18 5π/18 6π/18 0.5848 0.7071 0.8017 0.8752 0.9306 Hence, using the trapezoidal rule ∫ π /3 0 (sin θ ) d θ π 1 ≈ ( 0 + 0.9306 ) + 0.4167 + 0.5848 + 0.7071 + 0.8017 + 0.8752 18 2 π = ≈ [3.8508] 18 = 0.672 4. Evaluate using the trapezoidal rule, giving the answers correct to 3 decimal places: ∫ Since ∫ 1.4 0 1.4 0 e − x2 d x e − x2 d x , width of interval = x e − x2 0 1.0 (use 7 intervals) 1.4 − 0 = 0.2 7 0.2 0.4 0.6 0.8 1.0 1.2 1.4 0.9608 0.8521 0.6977 0.5273 0.3679 0.2369 0.1409 Hence, using the trapezoidal rule, ∫ 1.4 0 1 e − x2 d x ≈ (0.2) (1.0 + 0.1409 ) + 0.9608 + 0.8521 + 0.6977 + 0.5273 + 0.3679 + 0.2369 2 = (0.2)[4.21315] = 0.843 1121 © 2014, John Bird EXERCISE 281 Page 761 1. Evaluate using the mid-ordinate rule, giving the answers correct to 3 decimal places: ∫ Since ∫ 2 0 2 0 3 dt 1+ t2 (use 8 intervals) 2−0 3 = 0.25 d t , width of interval = 2 8 1+ t Hence, ordinates occur at 0, 0.25, 0.50, 0.75, 1.0, 1.25, 1.50, 1.75 and 2.0, and mid-ordinates occur at 0.125, 0.375, 0.625, 0.875, 1.125, 1.375, 1.625 and 1.875 t 3 1+ t2 0.125 2.9538 0.375 0.625 0.875 1.125 1.375 1.625 1.875 2.6301 2.1573 1.6991 1.3241 1.0378 0.8240 0.6644 Hence, using the mid-ordinate rule, ∫ 2 0 3 d t ≈ ( 0.25 ) [ 2.9538 + 2.6301 + 2.1573 + 1.6991 + 1.3241 + 1.0378 + 0.8240 + 0.6644] 1+ t2 = ( 0.25 ) [13.2906] = 3.323 2. Evaluate using the mid-ordinate rule, giving the answers correct to 3 decimal places: ∫ π /2 0 1 1 + sin θ (use 6 intervals) π Since ∫ π /2 0 −0 π 1 = 2 = rad or 15° d θ , width of interval 6 12 1 + sin θ Hence, ordinates occur at 0°, 15°, 30°, 45°, 60°, 75° and 90°, and mid-ordinates occur at 7.5°, 22.5°, 37.5°, 52.5°, 67.5° and 82.5°. θ 1 1 + sin θ 7.5° 22.5° 37.5° 52.5° 67.5° 82.5° 0.8845 0.7232 0.6216 0.5576 0.5198 0.5021 Hence, using the mid-ordinate rule 1122 © 2014, John Bird ∫ π /2 0 1 π d θ ≈ [ 0.8845 + 0.7232 + 0.6216 + 0.5576 + 0.5198 + 0.5021] 1 + sin θ 12 π = [3.8088] 12 = 0.997 3. Evaluate using the mid-ordinate rule, giving the answers correct to 3 decimal places: ∫ 3 1 Since ∫ 3 1 ln x dx x (use 10 intervals) ln x 3 −1 = 0.2 d x , width of interval = 10 x Hence, ordinates occur at 1.0, 1.2, 1.4, 1.6, 1.8, 2.0, 2.2, 2.4, 2.6, 2.8, 3.0, and mid-ordinates occur at 1.1, 1.3, 1.5, 1.7, 1.9, 2.1, 2.3, 2.5, 2.7 and 2.9. x 1.1 ln x x 1.3 1.5 1.7 1.9 2.1 2.3 2.5 2.7 2.9 0.0866 0.2018 0.2703 0.3121 0.3378 0.3533 0.3621 0.3665 0.3679 0.3671 Hence, using the mid-ordinate rule ∫ 3 1 ln x d x ≈ (0.2)[ 0.0866 + 0.2018 + 0.2703 + 0.3121 + 0.3378 + 0.3533 + 0.3621 + 0.3665 x + 0.3679 + 0.3671] = (0.2)[3.0255] = 0.605 4. Evaluate using the mid-ordinate rule, giving the answers correct to 3 decimal places: ∫ π /3 0 (use 6 intervals) (cos3 x) d x π Since ∫ π /3 0 −0 π 3 , width of interval = rad or 10° = (cos x) d x 6 18 3 Hence, ordinates occur at 0°, 10°, 20°, 30°, 40°, 50° and 60°, and mid-ordinates occur at 5°, 15°, 25°, 35°, 45° and 55° 1123 © 2014, John Bird θ 5° ( cos 2 x ) 0.9943 15° 0.9493 25° 0.8628 35° 45° 55° 0.7414 0.5946 0.4344 Hence, using the mid-ordinate rule, ∫ π /3 0 π (cos3 x) d x ≈ [ 0.9943 + 0.9493 + 0.8628 + 0.7414 + 0.5946 + 0.4344] 18 π = [ 4.5768] 18 = 0.799 1124 © 2014, John Bird EXERCISE 282 Page 764 1. Evaluate using Simpson’s rule, giving the answers correct to 3 decimal places: ∫ π /2 0 (use 6 intervals) (sin x) d x π Since ∫ π /2 0 x −0 π = 2 = rad or 15° (sin x) d x , width of interval 6 12 0 (sin x) π 2π 12 12 3π 12 5π 12 4π 12 6π 12 0 0.5087 0.7071 0.8409 0.9306 0.9828 1.0000 Hence, using Simpson’s rule, ∫ 1 π (sin x) d x ≈ ( 0 + 1.000 ) + 4 ( 0.5087 + 0.8409 + 0.9828 ) + 2 ( 0.7071 + 0.9306 ) 3 12 π /2 0 π = [1.0000 + 9.3296 + 3.2754] 36 π = [13.605] = 1.187 36 2. Evaluate using Simpson’s rule, giving the answers correct to 3 decimal places: ∫ Since ∫ 1.6 0 1.6 0 1 dθ 1+θ 4 (use 8 intervals) 1.6 − 0 1 = 0.2 d θ , width of interval = 8 1+θ 4 θ 0 1 1+θ 4 1.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 0.9984 0.9750 0.8853 0.7094 0.5000 0.3254 0.2065 0.1324 Hence, using Simpson’s rule, ∫ 1.6 0 1 dθ 1+θ 4 1125 © 2014, John Bird 1 ≈ (0.2) (1.0 + 0.1324 ) + 4 ( 0.9984 + 0.8853 + 0.5000 + 0.2065 ) + 2 ( 0.9750 + 0.7094 + 0.3254 ) 3 = 1 (0.2) [1.1324 + 10.3608 + 4.0196] 3 = 1 (0.2) [15.5128] = 1.034 3 3. Evaluate using Simpson’s rule, giving the answers correct to 3 decimal places: ∫ Since ∫ 1.0 sin θ 0.2 θ θ sin θ θ 1.0 sin θ 0.2 θ dθ (use 8 intervals) d θ , width of interval = 0.2 0.3 1.0 − 0.2 = 0.1 8 0.4 0.5 (note that values of θ are in radians) 0.6 0.7 0.8 0.9933 0.9851 0.9735 0.9589 0.9411 0.9203 0.8967 0.9 1.0 0.8704 0.8415 Hence, using Simpson’s rule, ∫ 1.0 ( 0.9933 + 0.8415 ) + 4 ( 0.9851 + 0.9589 + 0.9203 + 0.8704 ) 1 d θ ≈ (0.1) θ 3 + 2 ( 0.9735 + 0.9411 + 0.8967 ) sin θ 0.2 = 1 (0.1) [1.8348 + 14.9388 + 5.6226] 3 = 1 (0.1) [ 22.3962] = 0.747 3 4. Evaluate using Simpson’s rule, giving the answers correct to 3 decimal places: ∫ π /2 0 (use 6 intervals) x cos x d x π Since ∫ π /2 0 x x cos x −0 π = 2 = rad or 15° x cos x d x , width of interval 6 12 0 0 π 12 0.2529 2π 12 0.4534 3π 12 0.5554 4π 12 0.5236 1126 5π 12 0.3388 6π 12 0 © 2014, John Bird Hence, using Simpson’s rule, ∫ π /2 0 1 π x cos x d x ≈ ( 0 + 0 ) + 4 ( 0.2529 + 0.5554 + 0.3388 ) + 2 ( 0.4534 + 0.5236 ) 3 12 π = [ 0 + 4.5884 + 1.9540] 36 π = [ 6.5424] = 0.571 36 5. Evaluate using Simpson’s rule, giving the answers correct to 3 decimal places: ∫ π /3 0 e x2 sin 2 x d x (use 10 intervals) π Since ∫ π /3 0 x −0 π 3 = rad e sin 2 x d x , width of interval = 10 30 x2 0 π 30 3π 30 2π 30 5π 30 4π 30 6π 30 7π 30 8π 30 9π 30 10π 30 e sin 2 x x2 0 0.2102 0.4250 0.6488 0.8857 1.1392 1.4114 1.7021 2.0064 2.3119 2.5929 Hence, using Simpson’s rule, ∫ π /3 0 1 π ( 0 + 2.5929 ) + 4 ( 0.2102 + 0.6488 + 1.1392 + 1.7021 + 2.3119 ) e x2 sin 2 x d x ≈ 3 30 + 2 ( 0.4250 + 0.8857 + 1.4114 + 2.0064 ) π = [ 2.5929 + 24.0488 + 9.4570] 90 π = [36.0987 ] = 1.260 90 6. Evaluate using (a) integration, (b) the trapezoidal rule, (c) the mid-ordinate rule, (d) Simpson’s rule. Give answers correct to 3 decimal places. ∫ 4 1 4 dx x3 (use 6 intervals) 1127 © 2014, John Bird (a) 4 ∫ 1 4 = dx x3 ∫ 4 1 −2 −2 4 x −2 −2 = 4 x= dx = − = 1.875 −2 1 x 2 1 16 1 4 (b) Width of interval = x 4 x3 4 −3 4 −1 = 0.5 6 1.0 1.5 2.0 2.5 4.0000 1.1852 0.5000 0.2560 3.0 3.5 4.0 0.1481 0.0933 0.0625 Hence, using the trapezoidal rule, ∫ 4 1 4 1 d x ≈ (0.5) ( 4.0000 + 0.0625 ) + 1.1852 + 0.5000 + 0.2560 + 0.1481 + 0.0933 3 x 2 = (0.5)[4.21385] = 2.107 (c) Mid-ordinates occur at 1.25, 1.75, 2.25, 2.75, 3.25 and 3.75 x 4 x3 1.25 1.75 2.25 2.75 3.25 3.75 2.0480 0.7464 0.3512 0.1923 0.1165 0.0759 Using the mid-ordinate rule, ∫ 4 1 4 d x ≈ (0.5)[ 2.0480 + 0.7464 + 0.3512 + 0.1923 + 0.1165 + 0.0759 ] x3 = (0.5)[3.5303] = 1.765 (d) Using the table of values from part (b), using Simpson’s rule, ∫ 4 1 ( 4.0000 + 0.0625 ) + 4 (1.1852 + 0.2560 + 0.0933) 4 1 d x ≈ (0.5) 3 x3 + 2 ( 0.5000 + 0.1481) = 1 (0.5) [ 4.0625 + 6.1380 + 1.2962] 3 = 1 (0.5) [11.4967 ] = 1.916 3 7. Evaluate using (a) integration, (b) the trapezoidal rule, (c) the mid-ordinate rule, (d) Simpson’s rule. Give answers correct to 3 decimal places. ∫ 6 2 1 dx (2 x − 1) (use 8 intervals) 1128 © 2014, John Bird (a) ∫ 6 2 1 dx (2 x − 1) Let u = 2x – 1, then du =2 dx and dx = du 2 1 Thus, Hence, 1 d= x (2 x − 1) ∫ ∫ 6 2 1 dx= (2 x − 1) (b) Width of interval = x 1 ( 2 x − 1) ∫ 1 1 du 1 1 u2 − u 2 d= u = = ∫ 2 1 u 2 2 2 6 ( 2 x − 1) 2 = u = ( 2 x − 1) 11 − 3 = 1.585 6−2 = 0.5 8 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 0.5774 0.5000 0.4472 0.4082 0.3780 0.3536 0.3333 0.3162 0.3015 Hence, using the trapezoidal rule, ∫ 6 2 1 dx (2 x − 1) 1 ≈ (0.5) ( 0.5774 + 0.3015 ) + 0.5000 + 0.4472 + 0.4082 + 0.3780 + 0.3536 + 0.3333 + 0.3162 2 = (0.5)[3.17595] = 1.588 (c) Mid-ordinates occur at 2.25, 2.75, 3.25, 3.75, 4.25, 4.75, 5.25 and 5.75 x 1 ( 2 x − 1) 2.25 2.75 3.25 3.75 4.25 4.75 5.25 5.75 0.5345 0.4714 0.4264 0.3922 0.3651 0.3430 0.3244 0.3086 Using the mid-ordinate rule, ∫ 6 2 1 d x ≈ (0.5)[ 0.5345 + 0.4714 + 0.4264 + 0.3922 + 0.3651 + 0.3430 (2 x − 1) + 0.3244 + 0.3086] = (0.5)[3.1656] = 1.583 (d) Using the table of values from part (b), using Simpson’s rule, ∫ 6 2 ( 0.5774 + 0.3015 ) + 4 ( 0.5000 + 0.4082 + 0.3536 + 0.3162 ) 1 1 d x ≈ (0.5) 3 + 2 ( 0.4472 + 0.3780 + 0.3333) (2 x − 1) = 1 (0.5) [ 0.8789 + 6.312 + 2.317 ] 3 1129 © 2014, John Bird 1 (0.5) [9.5079] = 1.585 3 = 8. Evaluate ∫ 3 0 (1 + x 4 ) d x using (a) the trapezoidal rule, (b) the mid-ordinate rule, (c) Simpson’s rule. Use 6 intervals in each case and give answers correct to 3 decimal places. (a) Width of interval = x (1 + x 4 ) 3−0 = 0.5 6 0 0.5 1.0 1.5 2.0 2.5 3.0 1.0000 1.0308 1.4142 2.4622 4.1231 6.3295 9.0554 Hence, using the trapezoidal rule, ∫ 3 0 (1 + x 4 ) d x 1 ≈ (0.5) (1.0000 + 9.0554 ) + 1.0308 + 1.4142 + 2.4622 + 4.1231 + 6.3295 2 = (0.5)[20.3875] = 10.194 (b) Mid-ordinates occur at 2.25, 2.75, 3.25, 3.75, 4.25, 4.75, 5.25 and 5.75 x (1 + x 4 ) 0.25 0.75 1.25 1.75 2.25 2.75 1.0020 1.1473 1.8551 3.2216 5.1603 7.6283 Using the mid-ordinate rule, ∫ 3 0 (1 + x 4 ) d x ≈ (0.5)[ 1.0020 + 1.1473 + 1.8551 + 3.2216 + 5.1603 + 7.6283 ] = (0.5)[20.0146] = 10.007 (c) Using the table of values from part (b), using Simpson’s rule, ∫ 3 0 (1.0000 + 9.0554 ) + 4 (1.0308 + 2.4622 + 6.3295 ) 1 (1 + x 4 ) d x ≈ (0.5) 3 + 2 (1.4142 + 4.1231) = 1 (0.5) [10.0554 + 39.2900 + 11.0746] 3 = 1 (0.5) [ 60.42] = 10.070 3 1130 © 2014, John Bird ∫ 9. Evaluate 0.7 0.1 1 d y using (a) the trapezoidal rule, (b) the mid-ordinate rule, (c) Simpson’s (1 − y 2 ) rule. Use 6 intervals in each case and give answers correct to 3 decimal places. ∫ (a) Since 1 0.7 (1 − y 2 ) 0.1 d y then width of interval = y 1 0.1 (1 − y 2 ) 0.2 0.3 0.7 − 0.1 = 0.1 6 0.4 0.5 0.6 0.7 1.0050 1.0206 1.0483 1.0911 1.1547 1.2500 1.4003 Hence, using the trapezoidal rule, ∫ 1 d y ≈ (0.1) (1.0050 + 1.4003) + 1.0206 + 1.0483 + 1.0911 + 1.1547 + 1.2500 2 (1 − y 2 ) 1 0.7 0.1 = (0.1)[6.76735] = 0.677 (b) Mid-ordinates occur at 0.15, 0.25, 0.35, 0.45, 0.55 and 0.65 y 0.15 0.25 0.35 0.45 0.55 0.65 1 (1 − y 2 ) 1.0114 1.0328 1.0675 1.1198 1.1974 1.3159 Using the mid-ordinate rule, ∫ 1 0.7 (1 − y 2 ) 0.1 d y ≈ (0.1)[1.0114 + 1.0328 + 1.0675 + 1.1198 + 1.1974 + 1.3159] = (0.1)[6.7448] = 0.674 (c) Using the table of values from part (a), using Simpson’s rule, ∫ 0.7 0.1 1 1 d y ≈ (0.1) (1.0050 + 1.4003) + 4 (1.0206 + 1.0911 + 1.2500 ) + 2 (1.0483 + 1.1547 ) 3 (1 − y 2 ) = 1 (0.1) [ 2.4053 + 13.4468 + 4.406] 3 = 1 (0.1) [ 20.258] = 0.675 3 1131 © 2014, John Bird 10. A vehicle starts from rest and its velocity is measured every second for 8 seconds, with values as follows: time t (s) 0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 velocity v (ms–1) 0 0.4 1.0 1.7 2.9 4.1 6.2 8.0 9.4 The distance travelled in 8.0 seconds is given by ∫ 8.0 0 vdt Estimate this distance using Simpson’s rule, giving the answer correct to 3 significant figures. ∫ 8.0 0 vdt ≈ = 1 (1.0 ) [(0 + 9.4) + 4(0.4 + 1.7 + 4.1 + 8.0) + 2(1.0 + 2.9 + 6.2)] 3 1 1 (86.4) = 28.8 m [9.4 + 56.8 + 20.2] = 3 3 11. A pin moves along a straight guide so that its velocity v (m/s) when it is a distance x (m) from the beginning of the guide at time t (s) is given in the table below. t(s) 0 0.5 v(m/s) 0 0.052 1.0 1.5 2.0 2.5 3.0 3.5 4.0 0.082 0.125 0.162 0.175 0.186 0.160 0 Use Simpson’s rule with 8 intervals to determine the approximate total distance travelled by the pin in the 4.0 second period. Distance travelled by pin 1 ≈ (0.5) [ (0 + 0) + 4(0.052 + 0.125 + 0.175 + 0.160) + 2(0.082 + 0.162 + 0.186) ] 3 = 1 (0.5) [ 0 + 2.048 + 0.86] 3 1 = (0.5) [ 2.908] 3 = 0.485 m 1132 © 2014, John Bird
© Copyright 2026 Paperzz