MATH 31 UNIT 3 LESSON #4 DERIVATIVES OF TRIGONOMETRIC FUNCTIONS Part 2: Tangent, Cotangent, Secant, and Cosecant NAME ANSWERS Page 1 of 5 The derivative of f(x) = tan x can be found by first rewriting the function in terms of sine and cosine. f x tan x sin x cos x Now, using the Quotient Rule: cos x cos x sin x sin x f ' x cos 2 x cos 2 x sin 2 x f ' x cos 2 x Using the Pythagorean Identity: 1 f ' x sec 2 x 2 cos x The derivative of f(x) = cot x can be found by first rewriting the function in terms of sine and cosine. f x cot x cos x sin x Now, using the Quotient Rule: sin x sin x cos x cos x f ' x sin 2 x sin 2 x cos 2 x f ' x sin 2 x Using the Pythagorean Identity: 1 f ' x csc 2 x 2 sin x U3 L4 Derivatives of Tan & Recip Fn MATH 31 UNIT 3 LESSON #4 DERIVATIVES OF TRIGONOMETRIC FUNCTIONS Part 2: Tangent, Cotangent, Secant, and Cosecant NAME ANSWERS Page 2 of 5 The derivative of the secant and cosecant functions can also be found by first rewriting the function in terms of sine and cosine. Find the derivative of f x sec x 1 1 cos x cos x Now, using the Chain Rule: f ' x cos x 2 sin x Find the derivative of f x csc x 1 1 sin x sin x Now, using the Chain Rule: f ' x 1 sin x 2 cos x f ' x sin x cos 2 x f ' x cos x sin 2 x f ' x sin x 1 cos x cos x f ' x cos x 1 sin x sin x f ' x tan x sec x f ' x cot x csc x EXAMPLE 1: Find the derivative of the function y = 2sec (3x). dy 2 tan 3 x sec 3 x 3 dx dy 6 tan 3 x sec 3 x dx U3 L4 Derivatives of Tan & Recip Fn MATH 31 UNIT 3 LESSON #4 DERIVATIVES OF TRIGONOMETRIC FUNCTIONS Part 2: Tangent, Cotangent, Secant, and Cosecant NAME ANSWERS Page 3 of 5 EXAMPLE 2: Find the derivative of the function f(x) = sin (2x) tan x Use the Product Rule and the Chain Rule g x sin 2 x g ' x cos 2 x 2 h x tan x h ' x sec2 x f ' x sin 2 x sec 2 x tan x 2 cos 2 x f ' x sin 2 x sec 2 x 2 tan x cos 2 x EXAMPLE 3: Find the derivative of the function Use the Quotient Rule and the Chain Rule: U3 L4 Derivatives of Tan & Recip Fn g ' x 2cos 2 x MATH 31 UNIT 3 LESSON #4 DERIVATIVES OF TRIGONOMETRIC FUNCTIONS Part 2: Tangent, Cotangent, Secant, and Cosecant NAME ANSWERS Page 4 of 5 Assignment Questions 1. Differentiate each of the following trigonometric functions. a) y = 2cot(2x) dy 4 csc 2 (2 x) dx b) f(x) = sin x sec (2x) f '( x) sin x sec(2 x) tan(2 x)(2) sec(2 x) cos x f '( x) sec(2 x)(2sin x tan 2 x cos x) c) y tan 5 x 4 cos x 3 3 2 3 2 dy cos x sec 5 x 4 (5) tan(5 x 4)[ sin( x )(3x )] dx cos 2 x3 3 2 2 3 dy 5cos x sec 5 x 4 3x tan(5 x 4)sin( x ) dx cos2 x3 d) f(x) = csc3(3x2) csc3x 2 3 6x f '( x) 3csc2 3x 2 csc 3x 2 cot 3x 2 f '( x) 18 x csc3 3 x 2 cot 3x 2 U3 L4 Derivatives of Tan & Recip Fn MATH 31 UNIT 3 LESSON #4 DERIVATIVES OF TRIGONOMETRIC FUNCTIONS Part 2: Tangent, Cotangent, Secant, and Cosecant NAME ANSWERS Page 5 of 5 2. Find the slope of the tangent to the function f x tan 3x when x . 3 2 f ' x 3sec 3x f ' x 3sec 2 3 3sec 2 3 2 f ' 3 1 3 3 x 3. Find the slope of the tangent to the function y sin x tan when x . 3 2 dy x x 1 tan cos x sin x sec 2 dx 2 2 2 dy x 1 x tan cos x sin x sec 2 dx 2 2 2 1 tan cos sin sec 2 6 3 2 3 6 1 1 1 3 2 3 2 2 2 3 1 1 2 3 3 1 2 2 3 2 3 3 0.866 2 3 4. Find the slope of the tangent line to the function y csc 2 x when x dy cot(2 x) csc(2 x)(2) dx 2 cot csc 4 4 2 1 2 2 2 2.83 U3 L4 Derivatives of Tan & Recip Fn 8 . 2
© Copyright 2026 Paperzz