clas(
Name
Do you
Date
know HOW?
eqlatlon.
solve each
J.8 3r= 12
2.
log38l:x
4
3.
logr
log3
:
2
300
4. You put$2000 into an accounteaming4% interest compounded continuously.
Find the amount in the account at ihe end of 8 years. $2754.25
Describe how the graph of each function is related to the graph of it6
parent function.
s.
!:
5.
/
2j+ I
= 3J 4
7. y =
Theg.aph i5lhegrapho{y= 2x retleded acrots thex-axis and
shifted up 1 unit.
The g.aph is the graph oJ
5'*l 2 Thegraph
y = 3r .hiJted right 4 units.
isthegraphof y=
5x shifted left 1 unit and down 2 units.
Evaluate each logadthm.
8. loga 125 3
11.
losrJ
9.
-:
lo&i
12. logr
2
10,
lo& 729
16 -2
r:.
ro96
6
fr -l
Write each equation in logarithmic form.
,t4. ?3
=
343 losT 343 =
3 tr. (.?)-t = T
""\*
=
-3
.16,2"4
= 0.0625
lo92 0.0625
Write each logarlthmic expression as a single logarithm'
'17.
log2 + 3log l
18. loga
log 2
-
Io+ab
lo9| or -log 6
@ by
1(log4, +
loga r-3iz
2
.
Teaching Resources
P€.non Educat on, lnc., or
it5
atliliatei. All Ri9htl Reierued.
Prentice Hall Gold Algebra
Copyright
19.
63
log4u)
* -4
Date
Name
Chopter 7 liesl
Fom
{conrinued)
Use the Change ofBase Formula 10
rewite
G
each exprcssion using common
logdithms.
2!.
20. loSa 12
22.logs14
log2 5
log
5
1.9 2
23. A parent jncreases a child's allowance by 15% each year lf the allowance is $3
now, when lvill it reach $15? in 12 years
24. A scientist notes that the number of bacleria in a colony is 50 Two hours later, she notes
that the number ofbacteria has increased to 80. ifthis rate of growth continues, how
much more time will it take fol the numbei olbacte a to reach 100? about 0 95 hoi]r
craph each function,
27.y=log(x+r)
Do you UNDCRSTAND?
Writing Describ e the effcct ol different values of a on the lunction y = aDt
ll la l > 1, it will stret(h the graph ol y = bx ll o < la l < 1, it will compre55 (shrinkl the
graph of y : t'r. lf a < O, there will be a reflection ov€r the x-axis
29. Vocabulary Statewhich proporly or properties need lo be used to wlile each
expression as a single logarithn.
b. 2tog23 + IoE24
a. 109616 10864
28,
Product and Power ProPeni€s
Quoti€ni ProPerty
30. Reasoning ldentily each fuirction a s linear, quadratic' or exponential. Exptailr
yout reasoning,
4(2)' exponential; the variable i5 in the exponent'
a.
quadrati(. the variable is raised to the power of z
b. y = e(x),
y
31.
t I
Wfiting Explain lhe difference between exponential growth and exponential decay'
Anlwer may vnry Sample: The value of b i5 greater than 1. in exPonential growth,
whereas the'valui of b is between O and 1 in exponential decay The valuet ol y
in(rease as the values of x ind?ate in exponential growth The values ot y decrease
ss the values oI
x increage in exponential decay.
2
Prentice HallGold Algebra
copyrighl@
by
Pea60i Edu.ation,
^.
'
, ar ils
64
Teaching Resources
a{liliates
A
RighaReseded
ch.F0#;sr
Do you
{.I.],
know HOW?
Simplify each radical expression. Use absolut€ value sl'mbols when needed.
r. l/soo$F
zol,fl
2.
g - 2snj -sa!
q.
a,"zl' a,
5.
Vsopr4 slrlt?v2
^/6aov
tlxlf {xy
6. \/zs6r*;u rcray,o
3.
VGr.t'rP
Simplify each expression. Rationalize all denominators. Assume ihat all
variables are posltive.
'@
'' \/rry- 7''o'
rc. t6f .t6f qxa
"
.2 t 2\2
B. :,,,
(e :i4)(o l JV2)46
,
^'--5 , - ,.
tz^ t t to 1'
11. v$ ' 2,,E8 - 5v7 2\712.
'-lA2
e.
-4/; !,
to X: Y'
e. .
VJ
1s.
\G(r -
r.45)
r,
i5
Simplify each expression. Assume that all varlables are positlve.
,,u. /rorYlo
\ 81ry /1i
E. (4x-2y4)
"*',P
2,
I
2+
Solve each equatlon, Check
zz.
17.
(-6q
zo.
(enr)
?
$.a?'al
"+
;(aor):1
al
2r.
(;i;1,li)
24.
tEx
,frd
lor extlaneous solutions.
1/Fa= ra
t/x + 7 = x +
23,
25.(2r+lF=313
ze.\,F
Letf.t) = I 1 5 un4t1") = r
Rnd the domain.
',: ' 7s; alt real
-
12
- s - t xtizt
?. Perform each
- g=24
27.3[r+
r)1
:4a
-s,7
function operation and then
2gklx, - 2x | 1s;3o. Ilx) . Elx)
all real number' F - 7x2 + 5x - 35t
-4!
all real numbe6
For each pair oftunctions, find (/" gxx) and (g ./J(r).
29.
dr^' numbers except
31. JQ)
= 3a +
5,
2s. IU)
7
g(r) =
I
-
+I
32. J(x)
3x2a8|gx2+3ox+26
zz. flx) : tE - t, g(') = 5.r +
3s.
(s.r(-r)
38. .^f(
V6)
4
utt4"1") =
80
2 1
I -
f -
1tc
+ 2,s(rc):2x
-1Bx +2;2*-1ox+4
3a. nt): 2e,gbc): x + a
4x2
3
V10xr5;5\.'2x-1+3
Letflx) = 5y -
=
l.
-2x2
FiDd each value,
36. (F. sX2)
3s. .^8(o)
16x
-
32t -2x2 + 4
37.
11
(s.r(0) ls
+o.ef(f)) -r
-9
Prentice Hall Gold AlgebE
-
2
.
Teaching Resources
copyr ght O by Peauon Edu.arion, rn.., orirealliliares AllRiqhrs Re5e.wd
a3
- rs\€
Date
Name
Chopier 6 Test {conr:nr:ed)
Form G
Find rhe inve$e ofeach function.ls the inverce
4t.
1r):
f1{xl
(x + 2)2
-
*.,,'1a
a
-4
4-2tro
M. fln):3x+ 2
f-l(d -dj iyes
= +.f
1{x}= i
a2- J(x)
f
45.
f
^r)
1(x)
a
function?
-|
rlr:ves
/.x): \/x
43.
.f '- 5'
= r \t ;-; .o
t
a6.
+
4
1(xl-x2-4,x>-Aiyes
f.x) ltr= z
fllxl
=
'3
-
z; yes
Graph. Find the domain and range ofeach function.
47.
j
v4+J 14s.y t\/xt350.y
vF-t'zts.y
1;
range:y>2
0;
range:y>3
x> -3;
rang€jys_1
domain: x >
domain:xe
domain:
\q+4-l
domain: x >
-4;
'angely<-1
Rewrlte €ach function to make it easy to graph using transformations. Describe the gmph'
St.
y= xgx
3\/r'7
AZ+q
s2.y=
3\i
wx U-5
v = zl x - a 5; graphof y=2{;
ihilted righ18 units and down 5 units
sa. y
fi.y:l/-2:7x 27+4
y = 4\'x: 2t grcph af y : \t sh;fted
y- -:{x -'l +4; graphofY=-31 x
rlght 2 units
sh'It€d left t units and uP 4 units
55. 'Ihe children's park has become very popular since your club built new play
equipment. Use the equation f = 4\A to calculate the amount of fence/you
y=
+ 4; graph of y =
shifted right 7 units and uP 4 uni13
:
"hu-zz
need to buy based on dre arca A ofthe playground.
a. The park currently has an area of8100 ft2. How marry fect offencing
currently encloses the Park? 360 {t
b. supposeyou want to increase the fenced play alea to four times its current
area.Ifyoucan reuse thc lencing already at the palk, how much new
lencing do you need to buy? 360 Jt
Do you UNDERSTAND?
56,
= 1-l* and providean
Explain under whal cir".r*.rurr"".
exampte to justiry your answer /, is .n odd integer; answers may vary sample:
-t*
Writing
y
t x on tie same coordinale Srid Nolice
thatlor0<.x' Lthegraphofy' \;lie.belo\ thegrapl)oly V'rbut
57. Reasoning Graph
_ v'r and y =
fort >
Explainwhythis is the case. Give an example
Answers may vary. sample: x* grows more rapidly (tha't-is, a5 n in<reas9lj for
x< I and grows more tlowly tor x > 1;forexarnple,.*-11 =i= i*u
the opposite is true
1.
\.64=8>4=f/G4.
Prentice Hall Gold Alqebra
Copyright
@ by
2
'
Teaching Resources
Pearon Educarion,lnc, or ils aftiliares AllRights Res€o'd
a4
11
-8:=-2=(-8),
Name
cl@st
Do you
0.^{..""
know HOW?
Write a functlon that models each variation.
r = lwheny = S.yvariesi[verselyasx. y= -1
2, r = 3 and y - 12 when z : 2. ?varies directly with y and inversely with r.
't.
z=
$
relationship between the values in each table a direct variation, an inverse
variation, or neither? Write an eqdatlon 1o model any direct or inverse varialion.
Is the
direct
3.
v
4
4
6
I
12
va.:ation;
4.
v
2
I
L
1
inv€rse variation;
3
v=!
1
1
Write an equation for the tanslation of y = f with the given asymptotes'
5.x=l,y:
t y-;2-i-t
b. x =
y= *a't,
5,y: t121
For each rational funciion, identify any holes or horizontal or vertical
asynptoles of its graPh.
8.
veatiaal asymptote,
x
:
hole at x = 8; no horizontal or verti.al
3;
lorizontal asymptote, y
r13
o.: (.r+2)l'[+3)
-
2lr 8)
v: -.
-.
a9yftpotote
1
10.y:--
,
3
vertical asymptote, x
asymptote, y
-3
= -3; verti€alasYmptote.
x = -2; horizontal asymptote, y I 0
hole aa x
:
= -4; horizontal
Sketch the graph ofeach mtional function.
r
n.y=;..,-z
v=,rlr, zt,li
S;mpltfyeach rational expression. State anyrestrictions on the variable.
'tt.{ffi H;x*3or-2
t.-,??-'
4r= 4r+l -
x q;x+\oro
Ar
4
Flnd the least common multiple ofeach pair ofpolynomials
'ts.
*
16 and s.f,
+ 20
5{x-4Xx+4}
Simplify each sum or diference.
2)(x + S)and2(x+ 5)2 14(x-2',1x +
2 Teaching Resources
ln., or ic afiiijales. AllRights ReseRed
Prentice HallGold Algebra
by Pea6on Edu(ation,
7(x-
'''.p\-i*u*1#
?+1,=j!
.L-L x 5 (x+
t''v+5
5)ts-s)
copyright@
16
63
'
5',1
clasr
Name
€hopter 8
Date
Fom
T€51 (conrinuedl
G
Simplih' each complex ftaction.
1e.
I +?
5--i
43
20.
4
r+l
-r-ti
Solve each equation. Check each solutlon.
z't.!+!=
to rz
23.
L: 2t-32
2
25.
1_ t4
631
22.
2,4
!
5
v+l
3: '?
24-
_r:?4
43
26.
u_!:
o2
x5
13
0
27. Chad can paint a room in 2 h. Cassie can paint the room in 3 h. How long
would it take them to paint the room working together? L2 h
28. How many millilitcrs of 0.65% salue solution must be added to 100 mL of 3%
saline solutionto get a 0.7% solution? ,600 mL
Do you UNDERSTAND?
29. Writing Explain what it means to simplily a lational expression.
The numeratot and denominator have no aommon tactols.
+ 3? Iustii' your answer
30. Reasoning Is (3, y) on the $aph oty =
3!
No; the graph ol the equatio. has a verli(al asymptote at x = 3
-.
3'1. Reasoning Is it possible to write a Jational equation that has a glaph with no
vertical asymptotes? Ex?lain.
Yes; answers may vary samPle:
l:
32. Reasoning Write an e\?ression in simplcst
form for the height ofthe rectangular
shown at the right. x 2
ptism
h
-
x+3
1
T
Wdting Describe ho\a the variables in the Eiven equation are related. y
yvarie, directly with th€ square ot w and the difference x - 2, and varies inve.sely with z'
?tt
33.
Prentice HallGold Algebra
CoryriohtO
by PeaBon
2
.
Teaching Resources
Edu6tion, ln( , or itafiiliat€s. AllRighs R€sefred.
64
2\
clars
i
0\\ hd,".,i
Do you
rC
I \ yr
\
,
t,C.'
know HOW?
Write each polynomial in slandard folm, Then classify it by degee and by
numberofterms.
1.
2 )4
2i
3 ' -+ e*,
6x1 -
q.x4"
2. g?
31
, 2r2r;- quadratic
12xz
4r{r
5)tx - 6)
;'3 ii? - i20x;
3.
cubic
ri"aq'i?'l'.1i'13?,Ti3r'" .r
.0"#33Ti"!.aprrrng. wr,ere necessa$lF#if,L
"""n
to the rearcst hundredth.
a.{+2*
s, f -zx-z=o
l=o
-0.64,0.64
e. 1++f +s=o
-0.60
7. ,f +gr++=o
8.x4+zr-3=0
2.20
-1.57, t
Write a pol''nomial functionwith rational coefficients
-0.85,4.05
9. f +z*+t:o
2.21
so that P(.r) : 0 hasthe
given roots,
10, 2,3,5
11-
y=xt-to*+3ix-30
-1,
l, I
y=v3 1v2 -r-,
13. 2-i, \/5
e. \f3,2i
y-f**-tz
y=f-qx3+2ox*25
Findthe z€ros ofeach function- State the multiplicity ofany multiple zeros,
'14.
- r)2(2.(- 3)r
:,
multipli(ity 3 '
y = (x
15.
Solve each
)/ (3x 2)\lx
-4, multipli(ity 2;
multipli<ity 5
1, multiplicity 2;
equalion.
17.(x-I)(*+5x+6)=0
-3, -2,1
19. (x + 2)(l +
-8, -2,5
:Jr
15.y:4-f(.r+2)3(x+i)
--4)2
j,
-1, multiplicity
-2, multiplidty
0, multiplicity 2
ra..f-to-r2+tor=0
o.2.8
20. .f + 3l
40) = o
s4x:
(,
-9,0,6
Divide using synthetic division.
zt.1f tf +x sl+{r+2)
x'z-6x+13,R
zz.
31
23.(.f +51 r+l)=(.i+2)
x2*3x^7.R18
2a.
yzl
tx +
z1 (x
2l+2x-2.R1
r)
GIt I +2x b): {).-l)
3x2
+2x+4,R
I
Ure the Rational Roo( Iheorem to list all possible mtional rools for each
equation.Ihen nnd any actual roots.
zs.
+3x+ 6 = o
i!'1,+z*
!2, !3, :t6;
27. wharis
26.! -zP + tz=o
xl, !2, !3, !4, t6, Xa2t
-2
p(-s) ifp(r) =
-.f - tf
+x
-
z?
B
2
.
Prentice Hall Gold Algebra
Teaching Resources
copyight o by PcaBon adu.arion,ln<, or irsalnl'.16 AllRigh$Reeetu.d
93
-2,2
1;
3;
Name
Date
class
Chopter 5 Test
Form G
l.oniinreul
Expand each blnomial.
28.
(r + y)a
/
29.
+ +x3y + sx2f +
+xf
+
f
32.
31.
+
80tsq2
-
64-
q)s
30. (2t +
32ts + soy'q
(4
+ 4olq3 +
10rga
+
q5
3x)3
144x
+
1o1x2
-
(a + 4b)3
at +'l2a2b + 48ab2 +
64b3
Eninat€d Number ol Dealhs ir the United srates
Deaths
(milliont
soumt:
1960
1970
1980
1990
2000
2001
1.71
1.92
1.99
215
140
242
www,nfopleaF..ot
a. Find a cubic function 1o model rhe data. (Let
b. Estimale the deaths for lhe year 2006.
2.55 million
r
= years after 1960.) y - 0.00001065f O.OOO584X2 + 0.02241, + 1.71258
Determine thecubic function thatis obtained from the parentfunction y =
aftel each sequence of transformations.
33,
27x3
vertical stretch by a factot of 5,
uanslatron 2 units left
a
a
rcflection acrcss the y-axis, and
a
.f
horizontal
y=51-x-2rr
34, a retlection across tlrer-axis, ahorizontal translation 3 units riglr(, and a
veftical translation 7 units down
Y=-(x-313-7
Do you UNDERSTAND?
35. Reasgning Would it be a good idea to use the cubic model found in
Exercise 32 to eslimale the deaths for t-he vear 2050? Whv or whv not?
No; answeri may vary. Sample: 2050 is far down the cubi< model and you have
.o way oI knowing what might affect the death rate ;n that many years.
36.
Writino
How do vou use Pascal's Trianple rvhcn exoandins a binomial? Pas(al'9
TrianglE qives yoLithe coefficient{ of eaih term in the exp;nded binomial. You use the
row in the triangle that has its secord term the same as the binomial's exponent.
function with the complex roots 5, Vz. and 3i be a foulth-degree No; i{ a polynomial
polynomial with rational coellicients? Explain. with complex roots 5, \ 2. and 3i has rational
coefti€ients, then the romplex facto.s of the polynomial must in(lude (x - 5), (x - \ 2), (x + 3t, and
(x + 3rJ, so the polynomial mult at leart b€ a {ifth-degree polynomial.
38. A cubic box is 5 in. on each side. If each dimension is incrcased by r in., what
is the polynomial function modeling the new volume y?
37. Can
a
v=P+15xzr75xr125in.3
Prenlice Hall Gold Algebra
2
.
Teaching Re5ources
CopyrightobyPea6onEducation, n. , oi l8 aflilialet. All
94
R
9hir i€rerved.
Date
class
€@r.dTest
Do you
,,
J,,,1
(/ e\
l, 0i'
Form G
know HOW?
1, Write the cquation of the parabola in standard form. Fild the coordinates of
tbepoints on the other side ofthe axis ofslmmetry conesponding to pand Q.
Label these points P' and Q', respectively. y =
t. o,
ax s; p (-2, 31, e
-* -
Sketch a glaph ofthe quadratic function
e
-
wilh the grven vetex and through the
given point.
2, ve(ex (3,4); point (5,8)
3.
ve exf 3, 2\point(1,2)
Grapheach quadratlc function. Name the axi$ ofslanmetry and lhe coordinates
ofthe vertex.
a
5.y:f -4x
Y=*+s
6.y= t2+zx
z
-t.
1r
y: rl:
9.
(3
3
o
Simplilyeachex?ressiot,
[3+t -(7+6, -4*5t
10. (-4 s;) + (5 - 7i) 't - 16i
8.
Solve each
12.
4t(5 + 2i)
zt/:'E
+ a,
23
-
q+ tsi
quadntic equation,
13.2.( 3x tl:0'a:
x2 16-o 4,-4
ta.P+zx 10:o
'16.
11.
-
2,
s. lf + aa-o
-5
xqi
Anthony has l0 ft of ftaming and wants to use it to make the largest
rectangular picture frame possible. Find the maximum area that can be
enclosed by his fiame. 5| tt2
P.entice HallGold Algebra
2
copyright 6 by Pea6on Edu(ar on, ln., or
93
.
ns
Teaching Resourtes
afil al€s AllRigha R€$rved.
14i
Date
class
€hopler 4 Tesl 1.onrinu"a1
Fom
G
Write each functton ln vertex fotm. Sketch dre graph of the frmction and label
l$ vertex.
17.
y= iz
+
4x-? y=(x+212 -11
19,y=3i2+nx y=3k
+312
-27
18.
f = -i2 + 4x -
20.
y=
lf
7
y = -(x
s, + t2
-
y=te
2)2
-sl2
+
3
-l
(Evaluate the discrimlnant ofeach equsdon. DeterElne how many real
solutions each equation has.
+ sx + 6 :
zt.
*
zz.
-zP - 5x+
0
solutions
22.
3* - 4t + 3 = O -20;
no real solutionr
4 = 0 57;2 realsolutons Za.
rc* -u + I = O o;l
realrolution
1; 2 .eal
Solve each system.
2s.
(v = -* + st + |
\'. ^..
-
(-1, -5),
* {tr =F : i }, .-4,
(4, 5)
22t, (2,
4'
Solve the following systems ofinequalities by graphing.
(v <
27. <'
f
+
(y>t'-9
* + sx - t
U<-x' x+2
u-I
(v >
2a. <'
Do you UNDERSTAND?
29. Reasoning Suppose a parabola has a veltex i! Quadrant w and a < 0 in its equation
y= a* + bt + c, How many real solutions will thc oquation a* + bx + c= 0 have?
30. Open-Ended
W
te a complex number with an absolute value between 3 and 8.
Aniwers may vary. Sample: 3
-
4i
Prcntice Hall Gold Algebra
Copyrighr
o
2
by Pe.Bon Edu(ation,l.<, or
94
.
Tea(hing Resources
is atfiliat.r, All Righ* leerEd.
Name
chqedlopre.r"*
Do you
,^{ D^.Jr,
q1o[0f6.,
Formc
know HOW?
Find the domain and range of each rclation, and determine whether it is
a
function.
1. \Q,1), (- 4,5), (r,7), (2, -3), (-r,2)i
not a fundioni domain: l-4, -1,1,21t
Gnget
2- 10,
function; domain:
t-3,1,2,5,71
Jun€tion;
domaini
{-3. - r, 1, 2. 3}
range: {-3, -2, 1, 2}
Suppose./(.r) = 3,
s.
ft2)
-1), (2,-2), (3, -3),
-
2
4 and
g(r) =
Irl
e.4l)
+
l!,
(4,
4), (5,
-5)l
2, 3.4, 5)t tange:
not a fundion;
4.
domain: {*3, -1,0,
1, 3t; range: {-3, - 1,
0, 1,2l
3. Find eachvalue.
r g1-z;
,
,.
fr
-l
Flnd the constant ofvariation lor each direct !'ariation where y varies
directly with x. Then find the value ofy when x = f;.
8.
y= 2whenx= 6
L;1
s.
y=2^wttenx=f,a;z
10. The diameter of a uee va es directly with its age A ls-year-old tree has a
3.75 in. diameter. How old will the $ee be when it has a 25 in. diameter? 100 yeais old
Find the slope of each line.
11. though
(-2,7)
and (4,
1) *1
12.
perpendiculartoy
: t- * i
-1
Using standard fom, wrlte the equation ofthe line with the given slope through
the given point.
ra. srope =
o;
(|, z)
r+. slope = |; (a, 3)
Prenti@ HallGold Algebra
2
.
15. slope
>+Y=o
Teaching Resources
copvriqhi o by Pea6on Fdu.alion. lnc., or iis alliliatee all Rights Reetued
83
= -2; (0,0)
Name
Date
class
Chopfer 2 Chopler Test
Fotm G
1"*ti"*a1
Using slope'intercept form, $Tite the equation ofthe line through eachpair
16. (0,0) and
(
2,3)
17. (1, 5) and
t=-1'
(-3,
1a.
3)
ofpoints.
(-4,1)and,(-2, -2)
v--),-s
,=\x+l
Describe each translation of y = lx I as /erri cal, horizontal, or multiple,
Then graph each translation, see graphs below.
20.y=lx-al
19.y=lx+3)-2
horizontal
multiple
craph each inequality, 5e9 below.
21.2x+
3y>
22.y<lx-
6
11
-r
23. The table shows the enrollment atwestside High duringthe
1800
yeals 2004-2009.
1750
Enrollment at westside High
Enrollment
2004
2005
2006
2007
2008
2009
1582
1635
1674
1713
1745
1801
ti00
€
a. Make a scatterplot ofthe data and draw a tlend line.
Letr = the number ofyea$ since 2003.
b. Write the equation ofthe line ofbest fit. y = 42.11x + '!545.93
c. Estimate the enrollmentin 2015.2051 students
I
1650
1600
0123456789
Do you UNDERSIAND?
Nunrberolyea6 sinre 2001
24. Reasoning Represent the data in a mapping diagram.
{(-3,2), (-1,0), (r, 2), (3,4)}
Does the rclationpass thevertical line test? Explain what you
can conclude from yout answer,
Yes; no x-valre i5 paired with two or moae y-values,
the relation ;s a lunltior.
25. Open-ended Write an absolute value function g(r) that reprcsents a multiple
transformauon ofthe parcnt function /(.r) = l;1. rhen graph gft) and/(r) on
the same coordinate grid. Answers may vary. sample: g(x) = lx + 2l - 5
so
19.
21.
20.
Prentice HallGold Algebra
2
.
Teaching Resources
copyrighto by Pea6on Edu.ation,lnc., or hi aftiliat$.
a4
A
Rightr Resefled
© Copyright 2026 Paperzz