AB Calculus Inverses and Derivatives Name: ___________________________________ Reminder: If (x, y) is a point on f(x), then (y, x) is a point on f −1 (x) ! 1. If f (x) = a. 1 x − 3 and g(x) = x 3 , find 8 f −1 (g −1 (1)) Note: f ′(a,b) = b. g −1 ( f −1 (−3)) 1 ( f )′(b,a) −1 Example: If f (1) = 2 and f ′(1) = 5 , then f −1 (2) = __________ and ( f −1 )′(2) = _____________. 2. If h(x) = cos(x) + 3x , find a. h(0) b. (h −1 )′ (1) 3. Let f and g be differentiable functions and let the values of f, g and the derivatives f ′ and g′ at x = 1 and x = 2 be given by the table below. Determine the value of (g −1 )′(2) . x 1 2 4. f ′(x) 5 6 g(x) 2 π g′(x) 4 7 Find the value of g ′(1) when g is the inverse of the function f (x) = 2sin x, − A. 5. f(x) 3 2 1 3 B. −1 1 2 C. D. − 1 3 E. Suppose g is the inverse function of a differentiable function f and G(x) = f ′(3) = A. − B. 4 C. 6 D. −1 E. 1 2 1 . If f(3) = 7 and g(x) 1 , find G ′(7) . 9 −5 π π ≤x≤ . 2 2 −4
© Copyright 2026 Paperzz