YOUNGEST PRECAMBRIAN DYKE ROCKS IN NORTH KARELIA, EAST FINLAND AARTO HUHMA HUHMA, Aarto 1981: Youngest Precambrian dyke rocks in North Karelia, East Finland. Bull. Geol. Soc. Finland 53—2, 67—82. The dykes which are the subject of the present paper are the youngest rocks in the area. These include microtonalite dykes about 1850 Ma old and lamprophyre dykes about 1830 Ma old. A total of 18 modal and chemical analyses (mainly by XRF) were made on the microtonalite dykes, showing that they vary largely in composition. Only a few lamprophyre dykes are encountered and one of them was analysed chemically. The dykes are mesocratic biotite-lamprophyres. Aarto Huhma, Laajalahdentie 9 A, SF-00330 Helsinki 33, Finland. Introduction Age d e t e r m i n a t i o n s f r o m N o r t h K a r e l i a s h o w t h a t t h e oldest P r e k a r e l i a n rocks, gneisses, a r e a b o u t 2600—2800 Ma old (Simonen 1980). Distinctly y o u n g e r a r e t h e K a r e l i a n i n t r u s i v e rocks (»the M a a r i a n v a a r a granite»), w h i c h d a t e at a b o u t 1860 Ma ( H u h m a 1976). These rocks a r e cut by distinctly y o u n g e r d y k e rocks, t h e m i c r o t o n a l i t e a n d l a m p r o p h y r e d y k e s to be d e a l t w i t h in this p a p e r (Fig. 1). T h e l a m p r o p h y r e d y k e s h a v e earlier b e e n described b y H a c k m a n (1914). T h e f i r s t l a m p r o p h y r e d y k e w a s discovered by J . N. Soikero in t h e s u m m e r of 1912 on t h e w e s t e r n s h o r e of a small lake, Niinilampi, a b o u t 1 k m SE of a f a r m called Hovi. A second d y k e w a s e n c o u n t e r e d some 1.5 k m f a r t h e r west. T h e distance b e t w e e n t h e d y k e s is a b o u t 2 k m . In t h e s u m m e r of 1913 V. H a c k m a n dis1 covered a t h i r d d y k e only a f e w m e t r e s f r o m t h e f i r s t one. None of t h e t h r e e d y k e s is t h i c k e r t h a n 20 to 30 cm. H a c k m a n g a v e a c o m p r e h e n s i v e description of t h e m i n e r a l composition of t h e d y k e s a n d p r e s e n t e d a m o d a l composition a n d t h e chemical d a t a on the basis of w h i c h h e classif i e d t h e rock as c a m p t o n i t e (ouachitite). As w e shall see later, h o w e v e r , t h e n o m e n c l a t u r e is not q u i t e a p p r o p r i a t e . E x p l o r a t i o n activity b y O u t o k u m p u Oy r e v e a l e d m o r e d y k e s in t h e s a m e a r e a ; c u r r e n t l y six d y k e s or p a r a l l e l d y k e s w a r m s a r e k n o w n . S o m e s u p p l e m e n t a r y studies on t h e m i n e r a l a n d chemical composition of t h e d y k e s w e r e u n d e r t a k e n f o r this p a p e r . T h e m i c r o t o n a l i t e d y k e s w e r e f i r s t discovered in t h e course of geological studies at K a a v i in 1954 in the a r e a of m a p sheet 4311 (Fig. 1). T h e y h a v e b e e n r e p o r t e d p r e v i o u s l y by H u h m a (1970, 1971, 1975, 1976). 68 Aarto Huhma USSR !«*Ä94Ö Niinivaara. fcO \ OUTOKUMPU» 6950 •)uo&di"/\ Fig. 1. Simplified geological map of the western part of North Karelia. 1. Prekarelian rocks, 2. Karelian rocks, 3. Microtonalite dykes, 4. Lamprophyre dykes. A940 = Dated microtonalite, A159 = Dated lamprophyre, 1—18 = Analysed microtonalites Tables 1 and 2). 6920 Microtonalite dykes 4311 ( S i v a k k a v a a r a ) , 4222 ( O u t o k u m p u ) and 4221 (Heinävesi) and in t h e e a s t e r n p a r t s of Mode of occurence m a p sheets 3333 (Juankoski) and 3244 (Vehmersalmi) Microtonalite d y k e s (the p r e f i x according to Streckeisen, 1967) a b o u n d in a N - S t r e n d ing zone in t h e w e s t e r n m a r g i n s of m a p sheets (Fig. 1). They discovered outside t h a t area. have not been The dykes are wholly unconnected with any larger plutonic bodies. Youngest P r e c a m b r i a n dyke rocks in N o r t h Karelia, East Finland 69 Fig. 2. The contact of a microtonalite dyke with pegmatite granite. A fragment of pegmatite granite is visible in the dyke. T h e d y k e s a r e f r o m a f e w c e n t i m e t r e s to s e v e r a l m e t r e s wide. It has, h o w e v e r , not a l w a y s b e e n possible to d e t e r m i n e t h e i r t r u e w i d t h because t h e y o f t e n occur in t h e m a r g i n s of outcrops a n d t h u s only one of t h e contacts is exposed. If b o t h contacts a r e visible, w i d t h s such as 15 cm, 50 cm, 2 m a n d slightly over 10 m h a v e b e e n m e a s u r e d . T h e d y k e s a r e not v e r y long a n d can seldom be t r a c e d f r o m one o u t c r o p to t h e next. T h e longest distance a d y k e has b e e n t r a c e d is a b o u t 50 m; it has b e e n e s t i m a t e d t h a t one o t h e r cannot b e longer t h a n 15 to 20 m. C o m p a r e d w i t h t h e i r length, t h e d y k e s are o f t e n f a i r l y w i d e and s o m e t i m e s almost isom e t r i c in shape. T h e n a r r o w dykes, w h i c h a r e only a f e w t e n s of c e n t i m e t r e s wide, a r e g e n e r a l l y rect i l i n e a r a n d of c o n s t a n t w i d t h a n d cut t h e c o u n t r y rock w i t h s h a r p contacts. In contrast, t h e w i d e d y k e s a r e of v a r i a b l e w i d t h and display contacts t h a t a r e o f t e n zig-zag. In places t h e d y k e s contain c o u n t r y rock f r a g m e n t s , e.g. p e g m a t i t e g r a n i t e in one e x p o s u r e (Fig. 2). S o m e of t h e f r a g m e n t s a r e r o u n d e d , some a n g u l a r , v a r y i n g in size f r o m single c r y s t a l s a n d q u a r t z f e l d s p a r m o t t l e s to f r a g m e n t s l a r g e r t h a n t h e p a l m of a h a n d . In a n o t h e r outcrop, d y k e rock p e n e t r a t e s mica gneiss, M a a r i a n v a a r a g r a n i t e a n d p e g m a t i t e crosscutting a n d b r e c c i a t i n g t h e m so t h a t t h e d y k e rock e x h i b i t s mica gneiss (Fig. 3) a n d g r a n i t e (Fig. 4) x e n o l i t h s w i t h s h a r p contacts. T h e l a t t e r m a y b e s e v e r a l m e t r e s in d i a m e t e r . A t M ä n t y j ä r v i , Kaavi, t h e r e is an o u t c r o p of q u a r t z i t e w i t h h o r i z o n t a l bedding. The q u a r t z i t e is crosscut b y a s u b v e r t i c a l m i c r o t o n a l i t e d y k e t h a t e x h i b i t s foliation p a r a l l e l to t h e d y k e (Figs 5 a a n d b). This d y k e (A 940) has b e e n d a t e d . A n o t h e r p a r a l l e l d y k e occurs a few metres away. D u r i n g m a p p i n g u n d e r t a k e n in 1954 a s t u d y w a s m a d e of t h e joints in a r e s t r i c t e d area. This s t u d y d e m o n s t r a t e d t h a t the joints e x hibit f o u r m a x i m a , t w o of w h i c h a r e associated w i t h t h e o c c u r r e n c e of m i c r o t o n a l i t e dykes. T h e d y k e s p r e f e r t h e joint m a x i m u m N35W, 75E. A n o t h e r joint m a x i m u m , less o f t e n f a v o u r e d by t h e dykes, is t h a t of N25W r 70 Aarto Huhma Fig. 3. A fragment of mica gneiss in a microtonalite dyke. The scale as in Fig. 4. 25W. T h e f o r m e r r e p r e s e n t s jointing, w h o s e s t r i k e p a r a l l e l s t h e s t r i k e of schistosity b u t w h i c h dips p e r p e n d i c u l a r to t h e dip of schistosity. T h e l a t t e r coincides w i t h t h e j o i n t i n g p a r a l l e l to t h e schistosity. Fig. 4. Fragments of Maarianvaara granite in a microtonalite dyke. i Petrography The microtonalite dykes are plagioclase-biotite-quartz rocks clase-biotite-hornblende-quartz fine-grained and plagio- rocks. P o t a s - Youngest P r e c a m b r i a n dyke rocks in North Karelia, East Finland Figs 5 a and b. 71 The contact of quartzite and a microtonalite dyke. to this r a t h e r e q u i g r a n u l a r rock, some l a r g e r e u h e d r a l plagioclase p h e n o c r y s t s r a n g i n g u p to 1 X 3.5 m m in size occur locally (Fig. 6). T h e m o r e m a f i c t h e d y k e rock, t h e abundant are these phenocrysts. more The larger plagioclase p h e n o c r y s t s in t h e m o r e acidic d y k e s a r e so indistinct t h a t t h e y can seldom be seen macroscopically. T h e h o r n b l e n d e - b e a r i n g d y k e s also contain h o r n b l e n d e as l a r g e r p h e n o c r y s t s u p to 3— 5 m m in length. In rocks poor in h o r n b l e n d e this m i n e r a l c a n n o t be discerned b y t h e n a k e d s i u m f e l d s p a r occurs only accessorily, even in t h e v a r i a n t s richest in q u a r t z . A t its most a b u n d a n t , p o t a s s i u m f e l d s p a r is e n c o u n t e r e d as a s e c o n d a r y f r a c t u r e filling. T h e a b u n d a n c e of q u a r t z v a r i e s f r o m a f e w p e r cent to almost 30. Bio<tite t e n d s to be r a t h e r common, a n d plagioclase, w h o s e a b u n d a n c e f r e q u e n t l y exeeds 50 °/o, is t h e p r e d o m i n a n t m i n e r a l . H o r n b l e n d e m a y be lacking b u t it m a y r e a c h a b u n d a n c e s as high as 15.8 %> (Table 1). T h e d y k e s f r e e f r o m or poor in h o r n b l e n d e r e s e m b l e f i n e - g r a i n e d mica schist (e.g. Fig. 5 a), so m u c h so that, in h a n d specimens, it is o f t e n impossible to distinguish t h e m f r o m mica schist. T h e d y k e s a r e foliated a n d w i t h out layering. To complicate t h e picture, t h e mica schist contains n o n - l a y e r e d portions. T h e g r a i n size of t h e d y k e s is f a i r l y small, v a r y i n g b e t w e e n 0.05 and 0.5 m m . In a d d i t i o n eye. Hence, ophitic or p o r p h y r i t i c textures a r e a b s e n t f r o m t h e dykes. T h e e q u i g r a n u l a r p o r t i o n s e x h i b i t distinct o r i e n t a t i o n owing to t h e p r e s e n c e of biotite (and h o r n b l e n d e ) . O t h e r w i s e t h e rocks are completely h o m o g e n e o u s w i t h o u t a n y zoning or l a y e r i n g . T h e o r i e n t a t i o n of t h e l a r g e r plagioclase and hornblende phenocrysts often differs f r o m t h e o r i e n t a t i o n of t h e m o r e f i n e - g r a i n e d portions. Plagioclase varies b e t w e e n An 2 5 a n d An 4 3 in composition a n d s h o w s only slight sericitization. T h e l a r g e s t plagioclase p h e n o c r y s t s a r e c h a r a c t e r i z e d by t w i n n i n g (albite, pericline, Karlsbad). T h e biotite is reddish b r o w n and i n t e n s e l y pleochroic. T h e h o r n b l e n d e is bluish green, s t r o n g l y pleochroic a n d occurs as b l u n t prisms. T h e l a r g e r h o r n b l e n d e crystals o f t e n 72 Aarto Huhma Table 1. Mineral composition of microtonalite dyke rocks. 1 Quartz Plagioclase (An) Biotite Hornblende Accessories Quartz Plagioclase (An) Biotite Hornblende Accessories 13.4 42.0 (40) 25.7 15.8 3.1 2 3 4 5 12.1 21.1 8.1 4.3 54.5 37.3 51.1 68.3 (30) (50—45) (35—30) (45—30) 20.8 30.5 38.6 16.8 9.2 7.7 0.7 6.9 3.4 3.4 1.7 3.7 6 7 14.8 12.5 58.7 59.9 (40) (45—25) 11.8 18.0 12.5 5.7 2.2 3.9 8 11.2 52.9 (30) 23.3 10.3 2.3 9 14.5 20.9 53.2 51.0 (40) (45—40) 24.8 26.0 4.7 2.8 2.1 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 11 12 13 14 15 16 17 18 Average 19.9 18.2 23.2 52.2 44.0 50.6 (32) (35—20) (40—35) 25.9 35.6 21.0 — — 3.2 2.0 2.2 2.0 100.0 100.0 100.0 19.8 10.7 28.5 25.8 23.4 54.2 50.5 49.7 50.0 55.0 (30) (35—30) (35—28) (45—35) (35—25) 21.7 38.8 20.9 23.1 18.3 3.8 0.3 0.5 tr 0.9 0.3 3.3 100.0 100.0 100.0 100.0 100.0 10 100.0 16.8 51.6 (35) 25.0 4.4 2.2 100.0 Accessories: 1. sphene, apatite, orthite, epidote, zircon 2. sphene, epidote, zircon, apatite, orthite, opaques, microcline 3. opaques, apatite, sericite, orthite, zircon 4. apatite, zircon, orthite 5. opaques 2.0 %>, orthite, sphene, rutile, zircon, apatite 1.7 °/o 6. opaques, apatite 7. opaques, sphene, epidote, sericite, apatite, orthite, zircon 8. sphene, opaques, apatite, orthite 9. apatite, orthite, zircon, opaques 10. chlorite, sphene, sericite, microcline, saussurite, opaques, apatite, orthite, zircon 11. chlorite, apatite, opaques, zircon, epidote, sphene, microcline 12. opaques, apatite, sericite, orthite, zircon 13. microcline, sphene, apatite, orthite, sericite, zircon 14. sphene, apatite, zircon 15. opaques, apatite, zircon 16. apatite, sphene, zircon, orthite, microcline 17. sphene, apatite, orthite, zircon, opaques 18. microcline, sericite, chlorite, apatite, orthite, zircon c o n t a i n a p p r e c i a b l e plagioclase, ilmenite a n d s p h e n e inclusions. T h e r e f r a c t i v e i n d e x d e t e r m i n a t i o n s indicate t h a t t h e compositions of h o r n b l e n d e in t w o s a m p l e s can be e x pressed (according to F r e u n d , 1955, p. 163) as Mg, i 0 Fe J 0 (y = 1.675) a n d M g „ F e 3 5 (y = 1.688). Q u a r t z occurs as small grains. T h e r e a r e n u m e r o u s accessories (Table 1) and t h e d y k e s occasionally contain a l m a n d i n e (n = 1.792) mottles 1.5 to 2 cm in d i a m e t e r . T h e crosscutting m o d e of o c c u r r e n c e of t h e d y k e s is clearly s h o w n in t h e t e x t u r e ; see t h e p h o t o m i c r o g r a p h (Fig. 7) of t h e contact b e t w e e n t h e q u a r t z i t e a n d a dyke. T h e m o d a l m i n e r a l composition given in T a b l e 1 s h o w s t h a t t h e a b u n d a n c e s of plagioclase, biotite a n d h o r n b l e n d e v a r y r a n d o m l y as a f u n c t i o n of q u a r t z a n d do not e x h i b i t a n y f u n c t i o n a l r e l a t i o n to t h e q u a r t z . P l o t t e d in Fig. 8 is t h e a b u n d a n c e of h o r n b l e n d e a g a i n s t t h a t of q u a r t z . T h e f i g u r e demonstrates that the hornblende/quartz r a t i o of t h e d y k e s is scattered, p r o b a b l y owing to c o n t a m i n a t i o n . Youngest Precambrian dyke rocks in North Karelia, East Finland 73 Fig. 6. A microtonalite with plagioclase phenocrysts. lOx. Nic. + . Photo E. Halme. Chemical composition E x c e p t f o r samples 5 a n d 15, w h i c h w e r e analysed by wet-chemical methods (Huhma, 1975), t h e samples collected f r o m t h e microt o n a l i t e d y k e s w e r e assayed by X R F at t h e Fig. 7. The contact between quartzite and dyke (quartzite on the left). lOx. Nic. + . Photo E. Halme. O u t o k u m p u Oy Geological L a b o r a t o r y of E x ploration. T h e a n a l y t i c a l d a t a of t h e d y k e s a r e listed in T a b l e 2. T h e chemical composition is i l l u s t r a t e d by a M g O — S i 0 2 d i a g r a m (Fig. 9). T h e t h r e e samples richest in SiO ä (Nos 16—18) consti- -o Table 2. Chemical compositions, Niggli values, and CIPW norms of some microtonalite dyke rocks. 1 Si02 TiOs AI2O3 FeO MnO MgO CaO Na-'O KoO P2O5 53.45 1.23 16.38 8.31 0.07 3.98 6.71 2.48 1.97 0.62 95.20 2 54.59 1.01 17.07 7.10 0.03 4.03 5.68 3.32 1.81 0.38 95.02 3 54.61 1.89 16.35 9.27 0.06 3.30 5.48 1.29 2.84 0.85 95.94 4 56.39 1.28 15.77 9.29 0.05 3.28 3.97 3.19 3.13 0.53 96.88 5 6 56.8 56.82 1.0 0.94 15.94 18.7 7.551 6.37 0.02 0.10 3.22 3.02 5.24 6.25 3.45 3.70 1.75 1.53 0.24 0.45 99.313 93.78 7 56.83 0.87 16.75 5.90 0.02 3.38 6.09 3.49 1.77 0.37 95.47 8 56.88 1.23 16.08 8.20 0.07 2.41 6.35 4.33 1.82 0.62 97.99 9 56.97 1.93 15.74 8.45 0.05 2.71 6.10 2.42 2.14 0.78 97.30 a 18 10 11 12 13 14 15 16 17 56.98 0.82 16.23 5.95 0.03 3.21 4.78 2.08 2.55 0.36 92.99 57.42 0.94 16.02 6.54 0.03 2.84 3.65 3.14 2.45 0.33 93.36 57.54 1.60 15.20 9.59 0.09 2.80 3.56 3.07 3.20 0.69 97.34 57.65 1.13 15.47 7.19 0.04 2.40 4.55 3.06 2.24 0.51 94.24 57.87 0.91 14.95 8.37 0.07 2.08 3.98 3.81 2.22 0.44 94.70 59.27 1.19 18.25 6.07 2 0.08 3.20 4.37 2.83 2.80 0.31 98.42 4 64.34 0.63 15.79 6.00 0.02 1.17 3.75 3.87 1.66 0.41 97.64 67.36 68.55 0.52 0.49 15.68 16.19 5.82 5.03 0.02 0.01 0.87 1.24 4.47 3.51 2.73 4.18 1.58 1.71 0.31 0.31 99.73 100.85 Niggli values 177 186 204 286 184 203 207 191 193 258 276 157 168 187 180 170 195 206 si 30.2 35.2 37.4 37.8 39.8 29.7 32.6 32.2 31.9 29.5 34.0 34.1 29.8 32.5 31.1 al 28.4 31.0 30.8 36.4 34.4 27.2 27.6 23.0 32.7 34.8 35.1 40.8 34.3 35.8 fm 33.3 33.8 32.3 39.7 36.8 40.7 40.5 15.7 19.2 21.1 21.1 21.3 18.2 14.1 12.7 17.4 15.0 15.3 16.1 19.6 21.1 13.6 20.0 c 18.7 18.8 21.5 12.1 16.6 18.0 15.1 15.0 14.1 14.8 14.6 16.7 13.0 16.7 15.7 19.3 alk 10.8 13.5 9.8 16.2 0.28 0.21 0.22 0.37 0.45 0.34 0.41 0.32 0.28 0.39 0.22 k 0.34 0.26 0.59 0.39 0.24 0.23 0.25 0.34 0.36 0.49 0.44 0.34 0.31 0.45 0.26 0.27 0.24 mg 0.50 0.37 0.44 0.39 0.38 0.43 0.46 0.50 4.7 1.5 2.4 2.1 2.9 2.2 2.6 4.0 2.4 0.9 1.9 1.6 ti 2.7 4.5 3.1 2.3 3.0 2.3 0.5 1.1 0.5 1.0 0.7 0.4 0.7 0.5 0.2 0.5 0.8 0.5 0.8 0.8 0.4 1.1 0.7 0.7 P CIPW norms Q C Or Ab An Di Hy II Ap 6.6 11.6 21.0 27.7 1.3 23.9 2.3 1.5 95.9 5.9 0.1 10.7 28.1 26.0 15.6 3.2 16.8 10.9 21.6 7.1 1.2 18.5 27.0 16.2 21.5 1.9 0.8 95.0 22.2 3.6 2.0 95.9 23.2 2.4 1.3 96.9 5.5 10.3 31.3 29.2 0.2 20.3 1.9 0.6 99.3 11.8 0.2 9.0 29.2 23.0 17.7 1.8 1.1 93.8 9.0 5.1 10.5 29.5 24.8 2.5 16.6 1.7 0.9 95.5 10.8 36.6 19.1 7.1 15.5 2.3 1.5 98.0 14.1 0.2 12.6 20.5 25.2 16.7 2.2 15.1 17.6 21.4 13.9 2.3 14.5 26.6 16.0 10.7 1.9 18.9 26.0 13.1 14.2 1.0 13.2 25.9 19.2 10.5 0.1 13.1 32.2 16.9 14.3 3.3 16.5 24.4 19.7 22.3 1.8 9.8 32.7 15.9 30.4 2.1 9.3 23.1 20.1 25.0 1.8 10.1 35.4 15.4 19.2 3.7 1.8 97.3 17.6 1.5 0.9 93.0 17.5 1.8 0.8 93.4 22.1 3.0 1.6 97.3 17.4 2.1 1.2 94.2 19.2 1.7 1.0 94.7 17.3 2.2 0.7 98.4 12.9 1.2 1.0 97.6 13.0 1.0 0.7 99.7 10.6 1.0 0.7 100.9 Youngest Precambrian dyke rocks in North Karelia, East Finland 75 H o * "tf w w w cvi oo cd rh oi CM 16 14 12 10 q q q cd ^ cd 6 4 2 qcd öq o q cd oi cm "> J2 11 10 18J6 | l 7 .15 q q r-j in o -t Fig. 8. Hornblende as a function of the quartz in the microtonalites. q q q cd N N cö^ o t h e r samples. q in ^ cm q c i tjh H M t u t e a g r o u p t h a t d i f f e r s completely f r o m t h e A n o t h e r g r o u p of t w o samples (Nos 1 a n d 2) occurs in t h e opposite m a r g i n q cd of t h e d i a g r a m (high MgO a n d low S i 0 2 , in ^ c o n t r a s t to t h e first group). All t h e o t h e r samples (excluding No 15) a r e located w i t h i n a q q cd oi very narrow SiO a zone in which MgO varies b e t w e e n 2 and 3.4 %>. This g r o u p includes b o t h h o r n b l e n d e - f r e e and h o r n b l e n d e - q b e a r i n g rocks. cd cm T h e f i r s t g r o u p is f r e e f r o m h o r n b l e n d e , w h e r e a s t h e second g r o u p conq tains it in a b u n d a n c e . q ö explanation e f f e c t of c o n t a m i n a t i o n . q q t*- cd q cm t- ö h o h ö ö ö f o r these The most three probable groups is the For example, nos 16—18 a r e s i t u a t e d in M a a r i a n v a a r a g r a n i t e . co o ^ cd oo cd q q cd cm (D N M ^ ^ TfH -H o K % 01 o •1 '2 4 • o No h o r n b l e n d e q cd iri cm O Ö co r> CO CO CO cg o cd tjh cm ÖÖÖ D - CM qö o oi r^ q t> q cd oi cd q o o Hn m l• fe C fe m ^fÖ e few u cy o< w hÄ a o<< Hornblende-bearing 3 • lo ^ f—I q CO CO O ö -H -sf o CO CO ^ • MgO " 4X o i w tu^ [> o q cm a s lo iri - — iH II II o 1! O O II + 0) <D fe fe o 9, O K q q c rH ö Ö o o II II -3 C0 CO•3 •Ö TJ oo •? 1 7ni ns a> CD fe fe B TH <Nm ** 9» 8* »13 • 14 o 17 o18 50 60 Si0 70 % 2 Fig. 9. MgO — SiOa diagram of microtonalites. 76 Aarto Huhma Fig. 10. Photomicrograph of lamprophyre. Biotite (dark) and apatite (light) phenocrysts clearly visible. 20x. Nie.—. Photo E. Hänninen. Lamprophyre dykes Petrography Mode T h e rock is d a r k g r e y or almost black a n d f i n e - g r a i n e d w i t h n u m e r o u s small mica flakes. S o m e of t h e micas occur as l a r g e b u n d l e s one s q u a r e c e n t i m e t r e or m o r e in size. P h e n o c r y s t s of o t h e r m i n e r a l s a r e also present, b u t t h e y a r e not as c h a r a c t e r i s t i c and conspicuous as is t h e mica (Fig. 10). of occurrence In a d d i t i o n to t h o s e described by H a c k m a n (1914), t h e E x p l o r a t i o n Dept. of O u t o k u m p u Oy has discovered m o r e l a m p r o p h y r e dykes, b r i n g i n g t h e c u r r e n t n u m b e r of k n o w n d y k e s o r d y k e s w a r m s u p to six (Fig. 1). The width of t h e d y k e s v a r i e s f r o m a f e w c e n t i m e t r e s to 70 centimetres, b u t u s u a l l y f r o m 25 to 50 centimetres. In some localities the dykes h a v e been e n c o u n t e r e d in only one outcrop, w h e r e a s in o t h e r s t h e y can be t r a c e d f o r over 100 m e t r e s f r o m one outcrop to t h e n e x t . T h e d y k e s u s u a l l y occur alone, b u t in some places two or t h r e e p a r a l l e l d y k e s lie close together. T h e contacts of t h e d y k e s a r e v e r y s h a r p a n d rectilinear. T h e p r e d o m i n a t i n g t r e n d is N73W; only r a r e l y do t h e y d e p a r t f r o m this direction a n d t h e n v e r y slightly. T h e dip is s u b v e r t i c a l to vertical. T h e d y k e s cut b o t h t h e b a s e m e n t gneiss and t h e p e g m a t i n e veins in it. Locally t h e y include small f r a g m e n t s of c o u n t r y rock. T h e g r o u n d m a s s consists of v e r y f i n e g r a i n e d biotite, plagioclase (c. An a ) ), potassiu m f e l d s p a r , q u a r t z , apatite, c a r b o n a t e , epidote, ilmenite, sphene, rutile, spinel, b a r i t e and zircon. T h e m i n e r a l composition w a s d e t e r m i n e d by X - r a y techniques, t h e rock being too f i n e - g r a i n e d for t h e m i n e r a l s to be i d e n t i f i e d w i t h c e r t a i n t y b y optic methods. Biotite, augite, apatite, orthoclase, calcite a n d q u a r t z occur as pehnocyrsts, w h e r e a s calcite and q u a r t z o f t e n exist as t h e filling of amygdules. Chemical composition T w o w e t - c h e m i c a l analyses of t h e l a m p r o p h y r e d y k e s a r e given: t h e f i r s t one is by Youngest Precambrian dyke rocks in North Karelia, East Finland Table 3. Chemical composition of the lamprophyre dykes. SiOo TiO-> ZrO ai2o3 Cr 2 0 3 Fe->Oa Feb MnO MgO CaO BaO SrO Na->0 k>6 P->Oä S Cl CO» H>0 + H>0— 1 2 43.40 1.98 n.d. 12.71 n.d. 1.94 5.80 0.34 8.64 9.67 n.d. n.d. 3.06 4.66 3.44 0.27 0.10 2.56 0.78 0.17 45.51 1.61 0.13 13.43 99.52 98.44 0.01 3.27 5.25 0.12 5.78 7.72 1.19 0.60 3.84 3.94 2.91 0.22 n.d. 1.34 1.24 0.33 Cu Zn Ni Co Pb 108 ppm 218 » 75 » 38 » 150 » 1. The analysis by Hackman (1914) 2. The analysis of the sample A159 n.d. = not determined H a c k m a n (1914) (No 1 in T a b l e 3) a n d t h e o t h e r t h a t of s a m p l e A159 (No 2 in T a b l e 3), analysed at t h e O u t o k u m p u Oy Geological L a b o r a t o r y of E x p l o r a t i o n . 77 m a p sheet 4311 05D (6996.60/435.09) a n d one f r o m a l a m p r o p h y r e d y k e (A159), at Niiniv a a r a , Kaavi, on m a p sheet 4311 07B (6988.78/ 442.94) (see Fig. 1 a n d T a b l e 5). T h e m i c r o t o n a l i t e d y k e occurs in K a r e l i a n q u a r t z i t e (Fig. 5) and t h e l a m p r o p h y r e d y k e in P r e k a r e l i a n gneiss. T h e d a t i n g s w e r e based on zircon a n d s p h e n e (Table 5). T h e age of t h e l a m p r o p h y r e d y k e w a s d e t e r m i n e d f r o m t h r e e zircon f r a c t i o n s (Fig. 12). T h e zircon in f r a c t i o n A is clear a n d seems to h a v e existed in l a r g e crystals t h a t w e r e b r o k e n d u r i n g crushing. This zircon f r a c t i o n gives an age of 1830 Ma, w h i c h is also t h e age of t h e dyke. T h e zircons in f r a c t i o n C a r e r o u n d e d . T h e y s h o w an age of 2460 Ma according to t h e continuous d i f f u s i o n model of W a s s e r b u r g (1963) a n d a r e obviously f r o m an e x t e r n a l source. F r a c t i o n B is an a d m i x t u r e . T h e results of t h e s p h e n e d a t i n g s a r e s u m m a r i z e d in T a b l e 5 and in Fig. 12. T h e zircon g r a i n s s e p a r a t e d f r o m t h e m i c r o tonalite d y k e (A940, T a b l e 5) w e r e all r o u n ded and r e s i d u a l and g a v e an age of 2640 Ma according to t h e continuous d i f f u s i o n model Ab +An + Ne T h e chemical composition indicates t h a t t h e s e rocks contain conspicuous a m o u n t s of K and P. T h e i r Ba, Sr, a n d Zr c o n t e n t s a r e also m a r k e d . C o m p a r i s o n of t h e chemical compositions, n o r m a t i v e m i n e r a l s a n d Niggli v a l u e s of t h e c a m p t o n i t e s (1—5) a n d l a m p r o p h y r e s in K a a vi (6—7) (Table 4) indicates the dissimilarities b e t w e e n t h e s e groups. See also Fig. 11. Dating T w o s a m p l e s w e r e d a t e d : one f r o m a m i c r o t o n a l i t e d y k e (A940) at M ä n t y j ä r v i , K a a v i , on Table 4. Diagram after Fig. 2 by Rock (1977, p. 136). Dashed line indicates the basalt screen of Manson (1967). 78 Aarto Huhma Table 4. Chemical compositions, CIPW norms and Niggli values of lamprophyres. 1 2 3 4 5 6 7 40.70 3.86 16.02 5.43 7.84 0.16 5.43 9.36 3.23 1.76 0.62 44.4 3.3 14.3 3.9 7.4 n.m. 7.1 10.6 3.2 1.7 n.m. 44.67 3.26 14.35 4.50 7.19 n.m. 7.02 9.45 2.99 1.91 n.m. 43.01 2.72 14.64 4.83 7.26 n.m. 6.78 10.25 3.27 1.90 n.m. 42.96 2.75 14.82 4.64 7.44 n.m. 6.68 10.18 3.41 2.02 0.71 43.40 1.98 12.71 1.94 5.80 0.34 8.64 9.67 3.06 4.66 3.44 45.51 1.61 13.43 3.27 5.25 0.12 5.78 7.72 3.84 3.94 2.91 94.41 95.9 95.34 94.66 95.61 95.64 93.83 CIPW norms Or Ab An Lc Ne Dx Hy Ol Mt II Ap 10.40 14.09 24.02 7.17 14.67 7.42 — 7.87 7.33 1.47 10.05 13.36 19.63 — 7.43 26.30 11.23 10.14 19.66 — 9.50 24.92 _ 7.06 7.00 5.20 n.m. 11.94 12.02 19.17 — 9.12 21.37 13.81 12.35 7.18 10.76 7.34 14.64 7.20 5.66 6.27 n.m. 11.29 17.55 20.10 — 4.20 21.31 _ 8.19 6.53 6.20 n.m. Niggli values si al fm c alk k mg ti p 96 22.2 44.3 23.5 10.0 0.26 0.43 6.82 0.62 102 19.3 45.1 26.0 9.6 0.29 0.54 5.68 n.m. 105 19.9 46.7 23.8 9.7 0.30 0.53 5.78 n.m. 98 19.7 45.2 25.1 10.0 0.28 0.51 4.67 n.m. Si0 2 TiOg AI2O3 Fea03 FeO MnO MgO CaO NaaO K->0 P2O5 8.40 6.73 5.22 1.68 15.02 2.81 3.76 8.15 23.28 23.06 7.77 — 5.11 9.21 _ 10.40 4.74 3.06 6.89 98 19.9 44.8 24.8 10.5 0.28 0.51 4.71 0.69 100 17.3 45.0 23.9 13.9 0.50 0.66 3.44 3.37 120 20.8 41.0 21.8 16.4 0.40 0.55 3.19 3.24 _ _ _ 1. Average of 15 camptonites (Johannsen, op.cit., Vol. IV, p. 65) 2. Average of 14 camptonites (Nockolds, 1954) 3. Average of 78 camptonites (Metais and Chayes, 1963) 4. Average of 107 camptonites (Rock, 1977) 5. Estimated mean composition of 95 camptonites (Rock, 1977) 6. Lamprophyre by Hackman (1914) 7. Sample A159 n.m. = not mentioned of W a s s e r b u r g (1963); t h u s a n e x t e r n a l source is suggested. The microtonalite dyke contains abundant s p h e n e w i t h an age of 1850 Ma. It is, h o w ever, u n k n o w n w h e t h e r this can b e t a k e n as t h e age of t h e d y k e or w h e t h e r t h e s p h e n e is m e t a m o r p h i c in origin. Discussion Microtonalites The microtonalites are fine-grained dyke rocks of tonalitic (or q u a r t z dioritic) composition. Youngest P r e c a m b r i a n d y k e rocks in North Karelia, East Finland CO C - CD O l CM O l CM O l CO CO O l C- C D CO CO ^ O l CO ^ O I O O l C D CM t - O l CM i ß I ß Iß ^ I ß CO T P CO CM - H O T»< CO CO •—i rt 4 CO ^t 1 ^ C— CM L O O LO t - 0 0 T-H TjH CO CO O l CM CM Lß t > M ^ O OJ ^ Iß l> i ß rjn i ß O C D CM CO »—( i ß i ß CO i ß O l H CO O C D CO ^ Ol C- ifi H M T f CM CO t> . Iii T h e usage of t h e t e r m s t o n a l i t e and q u a r t z diorite is s o m e w h a t a m b i g u o u s in t h e l i t e r a t u r e and o f t e n r e f e r s to t h e s a m e rock. J o p l i n (1964) calls rocks w i t h less t h a n 10 %> q u a r t z , q u a r t z diorite a n d those w i t h m o r e t h a n 10 °/o q u a r t z , tonalite. In t h e classification by J o h a n n s e n (1941, Vol. II, p. 378), all t h e rocks described in t h e p r e s e n t p a p e r f a l l into t h e class of tonalites 228P. His q u a r t z b o u n d a r y is at 5 °/o. R e f e r r i n g to tonalites, S h a n d (1949) states: »This division includes all o v e r s a t u r a t e d rocks in w h i c h t h e a n o r t h i t e molecule exceeds t h e orthoclase molecule, r e g a r d l e s s of t h e n a t u r e of t h e d a r k minerals». According to t h e s y s t e m by S h a n d , t h e rocks u n d e r consideration belong to tonalites, m o r e precisely to indices X O / and XO<5. S a m p l e s 4 and 14 (index XOß), h o w e v e r , S h a n d w o u l d h a v e considered as g r a n o d i orites. According to t h e m o r e r e c e n t classification by I U G S (1973) t h e rock samples in T a b l e 1 a r e tonalites b u t some of t h e m a r e close to q u a r t z diorite; No 5 is t h e only q u a r t z diorite. T h e c o m p a r i s o n b e t w e e n t h e m e a n of t h e 18 microtonalites in t h i s p a p e r a n d t h a t of t h e 19 t o n a l i t e s of J o h a n n s e n ( J o h a n n s e n , op. cit. Vol. II, p. 386) s h o w s t h a t t h e s i m i l a r ity is n o t v e r y conspicuous (Table 6). On the o t h e r hand, t h e Niggli v a l u e s of the m e a n of t h e m i c r o t o n a l i t e s (No 1) a r e q u i t e close to t h a t of Niggli's tonalitic m a g m a t y p e (No 2) (Niggli, op. cit.): 3 + : O ! COcd COcd CO^^CO^ CO ^ + cd cd CU 0) c ÜÜc c S oü uo o a; d) O öCU Jti .h°£ aX a .3"•S Q N m N N N W3 Cfl < CQ O Q P oi LO < 79 Niggli values si al fm c alk k mg ti P 201 32.7 34.4 17.7 15.2 0.32 0.39 2.6 0.7 200 33 33 22 12 0.40 0.50 n.d. n.d. 80 Aarto Huhma 2800, NIINIVAARA A159 2460^ 1900. 1830^/+b D SIZE (g/cm ) FRACTION 1000 A159A B C D 0 1.0 3,0 5,0 2 0 7 p b / 235U ZIRCON ZIRCON ZIRCON SPHENE 11,0 T h e age of t h e m i c r o t o n a l i t e d y k e s h a s not been established for s u r e b e c a u s e t h e d y k e only c o n t a i n s r e s i d u a l zircons (2460 Ma). T h e s p h e n e age, 1850 Ma, can be i n t e r p r e t e d as t h e age of m e t a m o r p h i s m . Geological evidence, h o w e v e r , suggests t h a t it is also t h e age of t h e dyke. T h e m i c r o t o n a l i t e d y k e s crosscut t h e M a a r i a n v a a r a g r a n i t e t h e age of w h i c h is 1860 Ma. T h e o t h e r limit of t h e age is set b y t h e l a m p r o p h y r e d y k e t h a t is 1830 Ma old. According to Rock (1977, p. 125), l a m p r o p h y r e s a r e a l w a y s t h e latest m a n i f e s t a t i o n of igneous activity in a given region, accomp a n y i n g aplites, p e g m a t i t e s or c a r b o n a t i t e s . T h u s t h e age of t h e m i c r o t o n a l i t e d y k e s p r o b a b l y falls b e t w e e n 1860 Ma a n d 1830 Ma. T h e r e is no reason to d o u b t t h a t t h e real age of t h e m i c r o t o n a l i t e d y k e s is a b o u t 1850 Ma. Lamprophyres Hackman camptonites According d y k e rock (1914) called l a m p r o p h y r e d y k e s and ouachitites. to t h e chemical composition, t h e belongs to Niggli's shonkinitic +46 +46 +46 3.4-36 13,0 + 100 100-200 ROUNDED + 200 15,0 U («g/g) 56 69 165 102 17,0 Fig. 12. Concordia diagram for U-Pb ratios of zircons and sphene. Lamprophyre A159, Niinivaara, Kaavi. m a g m a t y p e (Niggli, 1923, pp. 193, 395), as do most c a m p t o n i t e s (Niggli, op. cit., p. 353). Hence the n a m e s used b y H a c k m a n , a l t h o u g h comprehensible, a r e r e j e c t e d in this p a p e r . T h e n a m e c a m p t o n i t e ( J o h a n n s e n , 1941, Vol. IV, p. 64) w a s given to d a r k g r e y to black d y k e rocks of basaltic h a b i t t h a t occur as satellites of foyaitic and t h e r a l i t i c p l u t o nites. T h e y h a v e not b e e n f o u n d in t h e a r e a n o w discussed. According to J o h a n n s e n (op. cit.), c a m p t o nites contain p h e n o c r y s t s of biotite, b a r k e vikite a n d t i t a n a u g i t e , a n d o f t e n olivine in a f i n e - g r a i n e d to d e n s e g r o u n d m a s s . The g r o u n d m a s s consists of plagioclase l a t h s a n d microlites of a m p h i b o l e a n d augite. According to Niggli, c a m p t o n i t e s m a y also contain n e p h e l i n e , leucite a n d o t h e r f e l d spathoides (Niggli, op. cit., pp. 214—215). In t h e opinion of S t r e c k e i s e n (1978) t h e m i n e r a l composition of c a m p t o n i t e s includes a m p h i b o l e (barkevikite, kaersutite), t i t a n a u gite, olivine, a n d / o r biotite in a g r o u n d m a s s of l a b r a d o r i t e , amphibole, p y r o x e n e w i t h s u b o r d i n a t e a l k a l i n e f e l d s p a r a n d foids; ± apatite, iron ore, calcite, zeolite etc. Youngest Precambrian dyke rocks in North Karelia, East Finland Rock (1977) gives t h e following d a t a on of the camptonites: Olivine free Table 6. Averages of the chemical compositions, Niggli values and CIPW norms of the microtonalites and tonalites. 1 Olivine bearing Amphibole only » + clinopyroxene » » + biotite » + biotite Clinopyroxene + biotite Biotite only 14 40 13 10 1 14 56 18 6 2 — — Totals 78 92 Ouachitites, t h e o t h e r n a m e proposed by H a c k m a n , a r e r e g a r d e d as o l i v i n e - f r e e biot i t e - m o n c h i q u i t e s , w h i c h occur as d a r k d y k e rocks in n e p h e l i n e - s y e n i t e . T h e m o n c h i q u i t e in O u a c h i t a R i v e r in A r k a n s a s has t h e f o l l o w ing m o d e : analcime 15, d a r k mica 44, p y r o x ene 26, m a g n e t i t e and p y r i t e 6, calcite 9 ( J o h a n n s e n , op. cit., Vol. IV, pp. 391, 382, 384), (cf. Niggli, op. cit., p. 215). T h e n a m e ouachitite (and monchiquite) is t h u s obviously i n a p p r o p r i a t e to t h e l a m p r o p h y r e discussed here. T h e m i n e r a l composition of k e r s a n t i t e s given b y S t r e c k e i s e n (op. cit.) is as follows: plagioclace (oligoclase—andesine), biotite, augite; ± a l k a l i n e feldspar, h o r n b l e n d e , olivine, q u a r t z , apatite, iron ore, calcite, etc. According to B e u g e a n d K r a m e r (1977, p. 80), t h e k e r s a n t i t e s a r e alkali-, especially K - d o m i n a n t a n d t h e y a r e also r e l a t i v e l y rich in P, Ba, and Zr. Thus, t h e l a m p r o p h y r e described in t h e p r e s e n t p a p e r r e s e m b l e s k e r s a n t i t e s to some degree, a l t h o u g h k e r s a n t i t e s a r e m o r e acidic containing c. 50 p e r cent SiO;> (Metais & Chayes, 1963). W i t h o u t r e n a m i n g t h e rock u n d e r discussion, it can be described as ' b i o t i t e - l a m p r o p h y r e of t h e shonkinitic m a g m a t y p e ' (cf. Niggli, op. cit.), or 'mesocratic b i o t i t e - l a m p r o p h y r e ' (cf. J o h a n n s e n , op. cit.). Or w h y not 81 Si0 2 TiO? 2 58.31 1.09 16.25 n.d. 7.28 (tot.Fe) 0.05 2.73 4.92 3.14 2.55 0.48 66.22 0.39 15.66 1.22 3.11 0.04 2.15 4.56 4.24 1.42 0.05 96.80 99.06 Niggli values si al fm c alk k mg ti P 201 32.7 34.4 17.7 15.2 0.32 0.39 2.6 0.7 256 35.6 26.1 18.9 19.4 0.18 0.47 1.13 0.08 CIPW norms Q c or ab an di hy il ap 13.3 1.2 12.0 26.6 20.6 0.6 18.2 2.1 1.1 AI2O3 FejOg Feb MnO MgO CaO NagO KJO P2O5 20.63 0 8.31 35.88 19.50 2.33 11.40 0.74 0.12 1. Average of the 18 microtonalites (Table 2) 2. Average of 19 tonalites (Johannsen, op.cit. Vol. II, p. 386) call it 'niinilite' after the lake Niinilampi as a l r e a d y proposed b y H a c k m a n . R a t h e r t h a n to discuss t h e n a m e of the l a m p r o p h y r e in K a a v i , t h e m a i n p u r p o s e of t h e p r e s e n t w o r k w a s to r e p o r t t h e age, 1830 Ma, of t h e y o u n g e s t rock f o u n d in N o r t h Karelia. Acknowledgements — The author is indebted to Outokumpu Oy for permission to publish this paper. The samples were chemically analysed at 82 Aarto Huhma the Outokumpu Oy Geological Laboratory of Exploration. The age determinations were made at the Geological Survey of Finland by Mr Hannu Huhma. Dr. P. Rouhunkoski and Dr. T. A. Häkli read the manuscript and Mrs Gillian Häkli "translated it into English. To all these persons I express my cordial thanks. And last but not least I thank my wife for her help. References Beuge, P. and Kramer, W. (1977) Lamprophyre Ostthüringens und ihre anomale Quecksilbergehalte im Ergebnis endogener und exogener Anreichungsprozesse. Sehr. geol. Wiss., Berlin 8, 79—99. Freund, H. (1955) Handbuch der Mikroskopie in der Technik. Bd. IV. Teil 1: Mikroskopie der Gesteine. Umschau Verlag, Frankfurt am Main. Hackman, V. (1914) Über Camptonitgänge im mittleren Finnland. Bull. Comm. Géol. Finlande 42, 1—18. Huhma, A. (1970) Short description of the geology of the Outokumpu district. In Huhma, A. and Huhma, M., Contribution to the geology and geochemistry of the Outokumpu region. Bull. Geol. Soc. Finland 42, 57—88. — (1971) Maps of the Pre-Quarternary rocks, 4222 Outokumpu, 4224 Kontiolahti and 4311 Sivakkavaara. Geological Map of Finland, 1 : 100 000. Geological Survey of Finland. — (1975) Precambrian rocks of the Outokumpu, Polvijärvi and Sivakkavaara map-sheet areas. English summary: 110—151. Suomen geologinen kartta, Kallioperäkartan selitykset 4222 Outokumpu, 4224 Polvijärvi, 4311 Sivakkavaara. Geological Survey of Finland. — (1976) New aspects to the geology of the Outokumpu region. Bull. Geol. Soc. Finland 48, 5—24. IUGS (1973) Plutonic rooks: Classification and nomenclature. Geotimes, October 1973, 26—30. Johannsen, A. (1941) A descriptive petrography of the igneous rocks. Univ. of Chicago Press, Chicago, Illinois. Joplin, G. (1964) A petrography of Australian igneous rocks. Angus and Robertson, p. 187. Manson, V. (1967) Geochemistry of basaltic rocks: major elements. In: H. H. Hess and A. Poldervaart (Eds.), Basalts. Wiley, New York, N.Y., 215—270. Métais, D. and Chayes, F. (1963) Varieties of lamprophyre. Ann. Rep. Geophys. Lab., Wash. 02, 156—157. Niggli, P. (1923) Gesteins- und Mineralprovinzen, Band I. Verlag von Gebrüder Borntraeger, Berlin. Nockolds, S. R. (1954) Average compositions of some igneous rocks. Bull. Geol. Coc. Am., 65, 1007—1032. Rock, N. M. S. (1977) The nature and origin of lamprophyres: Some definitions, distinctions, and derivations. Earth Sei. Rev. 13 (1977), 123— 169. Shand, J. S. (1949) Eruptive rocks. Murby & Co., London, 382—385. Simonen, A. (1980) Precambrian in Finland. Geol. Surv. Finland Bull. 304, 58 pp. Streckeisen, A. (1967) Classification and nomenclature of igneous rocks. N. Jb. Miner. Abh., 107, 2, p. 175. — (1978) Classification and nomenclature of volcanic rocks, lamprophyres, carbonatites and melilitic rocks. N. Jb. Miner. Abh., 134, 1, 1—14. Wasserburg, G. J. (1963) Diffusion processes in lead-uranium systems. J. Geophys. Res. 68, 4823—4846. Manuscript received, November 16, 1980.
© Copyright 2026 Paperzz