DEFINITION Section 16.8 TheorientationofasurfaceS inducesthepositive orientationoftheboundarycurveC asshownin thediagram.Thismeansthatifyouwalkinthe positivedirectionaroundC withyourheadpointing inthedirectionofn,thenthesurfacewillalwaysbe onyourleft. Stokes’ Theorem STOKES’ THEOREM NOTATION LetS beanorientedpiecewise‐smoothsurfacethatis boundedbyasimple,closed,piecewise‐smooth boundarycurveC withpositiveorientation.LetF bea vectorfieldwhosecomponentshavecontinuouspartial derivativesonanopenregionin thatcontainsS. Then Thepositivelyorientedboundarycurveofthe orientedsurfaceS isoftenwrittenas∂S.Sothe resultofStokes’Theoremcanbeexpressedas ⋅ curl ⋅ ⋅ curl ⋅ NOTE:Stokes’Theoremcanberegardedasahigher‐ dimensionalversionofGreen’sTheorem. COMMENT 1 Since ⋅ ⋅ and curl ⋅ curl ⋅ Stokes’Theoremsaysthatthelineintegralaroundthe boundarycurveofS ofthetangentialcomponentofF is equaltothesurfaceintegralofthenormalcomponent ofthecurlofF. RELATIONSHIP TO THE FUNDAMENTAL THEOREM OF CALCULUS curl ⋅ ⋅ ThereisananalogyamongStokes’Theorem, Green’sTheorem,andtheFundamental TheoremofCalculus.Thereisanintegral involvingderivativesontheleftsideofthe equationabove(recallthatcurlF isasortof derivative)andtherightsideinvolvesthe valuesofF onlyontheboundary ofS. 1 GREEN’S THEOREM AS A SPECIAL CASE ThespecialcasewherethesurfaceS isflatandlies inthe ‐planewithupwardorientation,theunit normalisk,thesurfaceintegralbecomesadouble integral,andStokes’Theorembecomes ⋅ curl ⋅ curl ⋅ ThisispreciselythevectorformofGreen’sTheorem giveninSection16.5.Thus,weseethatGreen’s TheoremisreallyaspecialcaseofStokes’Theorem. COMMENT 2 NotethatinthesecondpartofExample2,we computedasurfaceintegralsimplybyknowingthe valuesofF ontheboundarycurveC.Thismeansthat ifwehaveanyotherorientedsurfacewiththesame boundarycurveC,thenwegetexactlythesamevalue forthesurfaceintegral. IngeneralifS1 andS2 areorientedsurfaceswiththe sameorientedboundarycurveC andbothsatisfythe hypothesesofStokes’Theorem,then curl ⋅ ⋅ curl ⋅ CURL (CONTINUED) Let , , beapointinthefluidatlet beasmall diskwithradius andcenter .Then, curl curl forallpointsP on because thecurlofF iscontinuous.Thus,byStokes’Theorem,we getthefollowingapproximationtothecirculationaround theboundarycircle . ⋅ curl ⋅ curl curl ⋅ ⋅ curl ⋅ EXAMPLES 1. Let∂S bethetriangleformedbythe intersectionoftheplane2 2 6 andthethreecoordinateplanes.Verify Stokes’s Theoremif , , . , , 2. VerifyStokes’s Theoremfor 2 ,where S isthesurfaceofthe paraboloid 4 and∂S isthe traceofS inthe ‐plane. THE MEANING OF THE CURL VECTOR SupposethatC isanorientedclosedcurveandv representsthevelocityfieldinfluidflow.Considerthe lineintegral ⋅ ⋅ andrecallthatv ·T isthecomponentofv inthe directionoftheunittangentvectorT.Thismeansthe closerthedirectionofv istothedirectionofT,the largerthevalueofv ·T .Thus, ⋅ isameasure ofthetendencyofthefluidtomovearoundC andis calledthecirculation ofv aroundC. CURL (CONCLUDED) Theapproximationbecomesbetteras → 0 andwe have curl ⋅ lim → 1 ⋅ Thisgivestherelationshipbetweenthecurlandthe circulation.Itshowsthatthecurlv ·n isameasureof therotatingeffectofthefluidabouttheaxisn.The curlingeffectisgreatestabouttheaxisparallelto curl . 2
© Copyright 2026 Paperzz