Section 16.8 DEFINITION STOKES` THEOREM NOTATION

DEFINITION
Section 16.8
TheorientationofasurfaceS inducesthepositive
orientationoftheboundarycurveC asshownin
thediagram.Thismeansthatifyouwalkinthe
positivedirectionaroundC withyourheadpointing
inthedirectionofn,thenthesurfacewillalwaysbe
onyourleft.
Stokes’ Theorem
STOKES’ THEOREM
NOTATION
LetS beanorientedpiecewise‐smoothsurfacethatis
boundedbyasimple,closed,piecewise‐smooth
boundarycurveC withpositiveorientation.LetF bea
vectorfieldwhosecomponentshavecontinuouspartial
derivativesonanopenregionin thatcontainsS.
Then
Thepositivelyorientedboundarycurveofthe
orientedsurfaceS isoftenwrittenas∂S.Sothe
resultofStokes’Theoremcanbeexpressedas
⋅
curl ⋅
⋅
curl ⋅
NOTE:Stokes’Theoremcanberegardedasahigher‐
dimensionalversionofGreen’sTheorem.
COMMENT 1
Since
⋅
⋅
and
curl ⋅
curl ⋅ Stokes’Theoremsaysthatthelineintegralaroundthe
boundarycurveofS ofthetangentialcomponentofF is
equaltothesurfaceintegralofthenormalcomponent
ofthecurlofF.
RELATIONSHIP TO THE FUNDAMENTAL
THEOREM OF CALCULUS
curl ⋅
⋅
ThereisananalogyamongStokes’Theorem,
Green’sTheorem,andtheFundamental
TheoremofCalculus.Thereisanintegral
involvingderivativesontheleftsideofthe
equationabove(recallthatcurlF isasortof
derivative)andtherightsideinvolvesthe
valuesofF onlyontheboundary ofS.
1
GREEN’S THEOREM AS A
SPECIAL CASE
ThespecialcasewherethesurfaceS isflatandlies
inthe ‐planewithupwardorientation,theunit
normalisk,thesurfaceintegralbecomesadouble
integral,andStokes’Theorembecomes
⋅
curl ⋅
curl
⋅ ThisispreciselythevectorformofGreen’sTheorem
giveninSection16.5.Thus,weseethatGreen’s
TheoremisreallyaspecialcaseofStokes’Theorem.
COMMENT 2
NotethatinthesecondpartofExample2,we
computedasurfaceintegralsimplybyknowingthe
valuesofF ontheboundarycurveC.Thismeansthat
ifwehaveanyotherorientedsurfacewiththesame
boundarycurveC,thenwegetexactlythesamevalue
forthesurfaceintegral.
IngeneralifS1 andS2 areorientedsurfaceswiththe
sameorientedboundarycurveC andbothsatisfythe
hypothesesofStokes’Theorem,then
curl ⋅
⋅
curl ⋅
CURL (CONTINUED)
Let
, ,
beapointinthefluidatlet beasmall
diskwithradius andcenter .Then,
curl
curl
forallpointsP on because
thecurlofF iscontinuous.Thus,byStokes’Theorem,we
getthefollowingapproximationtothecirculationaround
theboundarycircle .
⋅
curl ⋅
curl
curl ⋅ ⋅
curl
⋅
EXAMPLES
1. Let∂S bethetriangleformedbythe
intersectionoftheplane2
2
6
andthethreecoordinateplanes.Verify
Stokes’s Theoremif
, ,
.
, ,
2. VerifyStokes’s Theoremfor
2
,where S isthesurfaceofthe
paraboloid
4
and∂S isthe
traceofS inthe ‐plane.
THE MEANING OF THE CURL
VECTOR
SupposethatC isanorientedclosedcurveandv
representsthevelocityfieldinfluidflow.Considerthe
lineintegral
⋅
⋅ andrecallthatv ·T isthecomponentofv inthe
directionoftheunittangentvectorT.Thismeansthe
closerthedirectionofv istothedirectionofT,the
largerthevalueofv ·T .Thus,
⋅
isameasure
ofthetendencyofthefluidtomovearoundC andis
calledthecirculation ofv aroundC.
CURL (CONCLUDED)
Theapproximationbecomesbetteras → 0 andwe
have
curl
⋅
lim
→
1
⋅
Thisgivestherelationshipbetweenthecurlandthe
circulation.Itshowsthatthecurlv ·n isameasureof
therotatingeffectofthefluidabouttheaxisn.The
curlingeffectisgreatestabouttheaxisparallelto
curl .
2