Supporting information for: Understanding the Solubility of Acetaminophen in 1-n-Alkyl-3-methylimidazolium-Based Ionic Liquids Using Molecular Simulation Andrew S. Paluch,∗,† Tuanan C. Lourenço,‡ Fenglin Han,† and Luciano T. Costa‡ Department of Chemical, Paper and Biomedical Engineering, Miami University, Oxford, Ohio 45056, USA, and Instituto de Química, Universidade Federal Fluminense - Outeiro de São João Batista, s/n CEP:24020-141, Niterói-RJ, Brazil E-mail: [email protected] Phone: (513) 529-0784. Fax: (513) 529-0761 ∗ To whom correspondence should be addressed Miami University ‡ Universidade Federal Fluminense † S1 List of Figures S1 Spatial distribution function projected in the xy plane showing the occurrence of anions around the hydroxyl and amide groups from acetaminophen. . . . . . . . . S3 S2 Spatial distribution function projected in the xy plane of the anion and cation center-of-mass around acetaminophen. . . . . . . . . . . . . . . . . . . . . . . . . S4 S3 Snapshot related to the acetaminophen (APAP)–anion interaction in the ionic liquid at 338.15 K and 1 bar. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S5 List of Tables S1 The computed (pure component) molar volume of the studied ionic liquids, water and cyclohexane at 338.15 K and 1 bar, along with the computed dimensionless residual chemical potential of acetaminophen infinitely dilute in each solvent. . . . S6 S2 The computed dimensionless residual chemical potential of benzene, phenol, and acetanilide infinitely dilute in [BMIM]+ [CH3 CO2 ]− , water and cyclohexane at 338.15 K and 1 bar. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S7 S3 The computed dimensionless residual chemical potential of benzene, phenol, acetanilide and acetaminophen infinitely dilute in water at 338.15 K and 1 bar using the TIP4P, TIP4P-Ew and TIP4P/2005 water models. . . . . . . . . . . . . . . . . S7 S4 The computed dimensionless residual chemical potential of acetaminophen infinitely dilute in [BMIM]+ [PF6 ]− and [BMIM]+ [BF4 ]− at 338.15 K and 1 bar using the ionic liquid force field of Zhong et al and Liu et al. . . . . . . . . . . . . S7 S2 Figure S1: Spatial distribution function projected in the xy plane showing the occurrence of anions around the hydroxyl (OH, A) and amide (NH, B) groups from acetaminophen in the ionic liquid [EMIM]+ [CH3 CO2 ]− at 338.15 K and 1 bar.. S3 Figure S2: Spatial distribution function projected in the xy plane of the anion (A) and cation (B) center-of-mass around acetaminophen in the ionic liquid [EMIM]+ [CH3 CO2 ]− at 338.15 K and 1 bar. The occurrence is shown at the bottom of the figures. S4 Figure S3: Snapshot related to the acetaminophen (APAP)–anion interaction in the ionic liquid [EMIM]+ [CH3 CO2 ]− at 338.15 K and 1 bar. S5 Table S1: The computed (pure component) molar volume of the studied ionic liquids, water and cyclohexane at 338.15 K and 1 bar, along with the computed dimensionless residual chemical potential of acetaminophen infinitely dilute in each solvent (1 =acetaminophen). These are the calculations that form the basis of this work with the ionic liquids modeled using the force field of Zhong et al and water modeled using TIP4P. Solvent [EMIM]+ [PF6 ]− [EMIM]+ [TF2 N]− [EMIM]+ [BF4 ]− [EMIM]+ [CF3 SO3 ]− [EMIM]+ [MeSO4 ]− [EMIM]+ [CF3 CO2 ]− [EMIM]+ [CH3 CO2 ]− [BMIM]+ [PF6 ]− [BMIM]+ [TF2 N]− [BMIM]+ [BF4 ]− [BMIM]+ [CF3 SO3 ]− [BMIM]+ [MeSO4 ]− [BMIM]+ [CF3 CO2 ]− [BMIM]+ [CH3 CO2 ]− [HMIM]+ [PF6 ]− [HMIM]+ [TF2 N]− [HMIM]+ [BF4 ]− [HMIM]+ [CF3 SO3 ]− [HMIM]+ [MeSO4 ]− [HMIM]+ [CF3 CO2 ]− [HMIM]+ [CH3 CO2 ]− water cyclohexane v [cm3 /mol] 183.357±0.084 268.761±0.048 164.170±0.048 193.940±0.039 176.848±0.045 182.759±0.039 161.342±0.048 217.366±0.081 302.887±0.072 198.556±0.126 228.482±0.048 211.224±0.063 217.286±0.045 196.697±0.132 251.939±0.084 337.993±0.084 233.298±0.048 263.624±0.090 246.368±0.129 252.382±0.060 232.148±0.090 18.666±0.001 115.232±0.051 S6 βµres,∞ 1,i -25.17±0.16 -25.80±0.14 -26.59±0.11 -27.51±0.14 -28.94±0.23 -29.37±0.10 -34.20±0.18 -24.61±0.18 -24.81±0.15 -26.13±0.13 -26.88±0.17 -29.10±0.27 -29.59±0.11 -34.40±0.23 -25.10±0.21 -25.04±0.16 -21.64±0.17 -25.93±0.26 -29.62±0.24 -28.93±0.13 -34.18±0.23 -22.54±0.04 -11.69±0.14 Table S2: The computed dimensionless residual chemical potential of benzene, phenol, and acetanilide infinitely dilute in [BMIM]+ [CH3 CO2 ]− , water and cyclohexane at 338.15 K and 1 bar. (1 ={benzene, phenol or acetanilide}) These are the calculations that form the basis of this work with the ionic liquids modeled using the force field of Zhong et al and water modeled using TIP4P. Solvent [BMIM]+ [CH3 CO2 ]− water cyclohexane [BMIM]+ [CH3 CO2 ]− water cyclohexane [BMIM]+ [CH3 CO2 ]− water cyclohexane Solute benzene benzene benzene phenol phenol phenol acetanilide acetanilide acetanilide βµres,∞ 1,i -4.03±0.10 1.59±0.03 -6.02±0.11 -14.87±0.12 -8.24±0.03 -7.44±0.12 -21.64±0.18 -15.22±0.04 -10.03±0.14 Table S3: The computed dimensionless residual chemical potential of benzene, phenol, acetanilide and acetaminophen infinitely dilute in water at 338.15 K and 1 bar using the TIP4P, TIP4P-Ew and TIP4P/2005 water models. (1 ={benzene, phenol, acetanilide or acetaminophen}) Water Model TIP4P TIP4P-Ew TIP4P/2005 TIP4P TIP4P-Ew TIP4P/2005 TIP4P TIP4P-Ew TIP4P/2005 TIP4P TIP4P-Ew TIP4P/2005 Solute benzene benzene benzene phenol phenol phenol acetanilide acetanilide acetanilide acetaminophen acetaminophen acetaminophen res,∞ βµ1,water 1.59±0.03 1.99±0.03 1.80±0.04 -8.24±0.03 -8.01±0.03 -8.27±0.03 -15.22±0.04 -14.84±0.05 -15.28±0.05 -22.54±0.04 -22.34±0.05 -22.73±0.06 Table S4: The computed dimensionless residual chemical potential of acetaminophen infinitely dilute in [BMIM]+ [PF6 ]− and [BMIM]+ [BF4 ]− at 338.15 K and 1 bar using the ionic liquid force field of Zhong et al and Liu et al. (1 =acetaminophen) IL [BMIM]+ [PF6 ]− [BMIM]+ [PF6 ]− [BMIM]+ [BF4 ]− [BMIM]+ [BF4 ]− IL Force Field Zhong et al Liu et al Zhong et al Liu et al S7 res,∞ βµ1,i -24.61±0.18 -26.33±0.32 -26.13±0.13 -27.81±0.30
© Copyright 2026 Paperzz