Trignometric Substitutions I) Evaluate the following indefinite integrals: Z 3 1) (36 − 9x2 )− 2 dx √ Sol. Let x = 2 sin θ, so that dx = 2 cos θdθ, and 4 − x2 = 2 cos θ. Then Z Z 1 1 2 − 32 (36 − 9x ) dx = 3 dx 27 (4 − x2 ) 2 Z 2 cos θ 1 dθ = 27 8 cos3 θ Z 1 = sec2 θdθ 108 1 = tan θ + C 108 x √ +C = 108 4 − x2 Z 2) √ dx 3 − 2x − x2 Z dx √ 3 − 2x − x2 Z dx p 4 − (x + 1)2 Z 1 √ du, = 4 − u2 = u = x + 1. Then let u = 2 sin θ; So that du = 2 cos θdθ. We have: Z 2 cos θ dθ = θ + C 2 cos θ x+1 = sin−1 ( )+C 2 Z √ 3) 9x2 − 25 5 dx, x > 3 x 3 5 Let x = sec θ, where θ ∈ [0, π2 ). 3 dx = 5 sec θ tan θdθ 3 and p 9x2 − 25 = 5 tan θ 1 Thus, Z √ 9x2 − 25 dx = x3 = = = = = = = = 5 tan θ 35 sec θ tan θ dθ 125 3 27 sec θ Z 9 tan2 θ dθ 5 sec2 θ Z 9 sec2 θ − 1 dθ 5 sec2 θ Z 9 (1 − cos2 θ)dθ 5 Z 9 sin2 θdθ 5 Z 9 (1 − cos 2θ)dθ 10 9θ 9 sin 2θ − +C 10 20 9θ 9 sin θ cos θ − +C 10 10 √ 5 9 cos−1 ( 3x ) 9x2 − 25 − + C. 10 2x2 Z x2 dx. (25 + x2 )2 Let x = 5 tan θ, so that dx = 5 sec2 θdθ. Note that 25 + x2 = 25 sec2 θ. Thus, Z Z 25 tan2 θ × 5 sec2 θ x2 dx = dθ (25 + x2 )2 252 sec4 θ Z 1 tan2 θ = dθ 5 sec2 θ Z sec2 θ − 1 1 dθ = 5 sec2 θ Z 1 = (1 − cos2 θ)dθ 5 Z 1 = sin2 θdθ 5 Z 1 (1 − cos 2θ)dθ = 10 1 sin 2θ = (θ − )+C 10 2 1 = (θ − sin θ cos θ) + C 10 1 x 5x = (tan−1 ( ) − )+C 10 5 25 + x2 Z 4) II) Evaluate the following definite integrals: 2 Z 1) 1 dx dx x2 + 16 0 √ Let x = 4 tan θ, so that dx = 4 sec2 θdθ. Note that x2 + 16 = 4 sec θ.Thus, √ Z 0 1 tan−1 ( 14 ) Z dx √ dx = 2 x + 16 0 tan−1 ( 14 ) Z = 4 sec2 θ dθ 4 sec θ sec θdθ 0 tan−1 ( 14 ) = ln | sec θ + tan θ||0 √ 17 + 1 = ln( ) 4 Z 4 2) √4 3 dx dx − 4) x2 (x2 Let x = 2 sec θ, so that dx = 2 sec θ tan θdθ and x2 − 4 = 4 tan2 θ. Thus Z 4 √4 3 dx dx = 2 x (x2 − 4) = = = = = π 3 Z 2 sec θ tan θ dθ 4 sec2 θ × 4 tan2 θ π 6 1 8 Z 1 8 Z 1 8 Z π 3 cos2 θ dθ sin θ π 3 1 − sin2 θ dθ sin θ π 6 π 6 π 3 csc θ − sin θdθ π 6 π 1 (− ln | csc θ + cot θ| + cos θ)| π3 8 √6 √ √ 1 1− 3 (− ln( 3(2 − 3)) + ). 8 2 3
© Copyright 2026 Paperzz