Trig Inverses Find the values of π₯ in the interval 0 β€ π₯ < 360 that satisfy each equation. _________________________ 1. π₯ = cosβ1 0 _________________________ 2. π₯ = sinβ1 ( 2) _________________________ 3. π₯ = arctan _________________________ 4. π₯ = sec β1 2 _________________________ 5. arctan 0 = π₯ _________________________ 6. arcsin = π₯ 1 β β3 3 1 2 Evaluate each expression. Find all possible values. _________________________ 7. cosβ1 0 _________________________ 8. sinβ1(β1) _________________________ 9. sinβ1 1 _________________________ 10. cosβ1(β1) _________________________ 11. tanβ1 _________________________ 12. arccos (β 2) _________________________ 13. arcsin (β _________________________ 14. arcsin (β ) _________________________ 15. arccos ( 2 ) _________________________ 16. arctan β3 _________________________ 17. tanβ1 (β1) β3 3 1 β3 ) 2 1 2 β2 Evaluate each expression. Assume that all angles are in Quadrant I. 1 2 _________________________ 18. sin (sinβ1 ) _________________________ 19. tan(tanβ1 4) _________________________ 20. cot (arctan 5) _________________________ 21. sin (cos β1 _________________________ 22. sec (cosβ1 2) _________________________ 23. cos (arccot ) _________________________ 24. tan (sinβ1 17) _________________________ 25. sin(tanβ1 1) 4 β3 ) 2 1 4 3 15 Evaluate each expression. Find all possible values. 1 _________________________ 26. sin (sinβ1 2) _________________________ 27. sin (cos β1 _________________________ 28. sin(tanβ1 1) β3 ) 2 Trig Inverses KEY Find the values of π₯ in the interval 0 β€ π₯ < 360° that satisfy each equation. 90°, 270° _________________________ 1. π₯ = cosβ1 0 45°, 135° _________________________ 2. π₯ = sinβ1 ( ) What angle has a sine of 30°, 210° _________________________ 3. π₯ = arctan 60°, 300° _________________________ 4. π₯ = sec β1 2 What angle has a cosine of 2? 0°, 180° _________________________ 5. arctan 0 = π₯ What angle has a tangent of 0? 30°, 150° _________________________ 6. arcsin = π₯ 1 β2 β2 ? 2 β3 3 What angle has a tangent of 1 2 Evaluate each expression. Find all possible values. 90° ± 180π _________________________ 7. cosβ1 0 270° ± 360π _________________________ 8. sinβ1(β1) 90° ± 360π _________________________ 9. sinβ1 1 180° ± 360π _________________________ 10. cosβ1(β1) 30° ± 180π _________________________ 11. tanβ1 120° ± 360π, 240° ± 360π 12. _________________________ arccos (β 2) 240° ± 360π, 300° ± 360π 13. _________________________ arcsin (β 210° ± 360π, 330° ± 360π 14. _________________________ arcsin (β ) 45° ± 360π, 315° ± 360π 15. _________________________ arccos ( 2 ) 60° ± 180π _________________________ 16. arctan β3 135° ± 180π _________________________ 17. tanβ1 (β1) β3 3 1 β3 ) 2 1 2 β2 What angle has a cosine of 0? β3 ? 3 1 1 2 What angle has a sine of ? Evaluate each expression. Assume that all angles are in Quadrant I. 1 1 1 2 _________________________ 18. sin (sinβ1 ) What is the sine of an angle that has a sine of ? 2 2 4 _________________________ 19. tan(tanβ1 4) What is the tangent of an angle that has a tangent of 4? 5 4 _________________________ 20. cot (arctan 5) What is the cotanent of an angle that has a tangent of 5? 4 4 1 2 _________________________ 21. sin (cos β1 2 _________________________ 22. sec (cosβ1 2) 4 5 _________________________ 23. cos (arccot ) What is the cosine of an angle that has a cotangent of ? 5 3 3 15 8 _________________________ 24. β2 2 _________________________ 25. β3 ) 2 1 What is the sine of an angle that has a cosine of β3 ? 2 1 What is the secant of an angle that has a cosine of 2? 4 4 3 4 15 tan (sinβ1 ) 17 What is the tangent of an angle that has a sine 15 of ? 17 17 8 sin(tanβ1 1) Evaluate each expression. Find all possible values. 1 2 _________________________ 26. sin (sinβ1 2) 1 ± 2 _________________________ 27. sin (cos β1 β2 ± 2 _________________________ 28. sin(tanβ1 1) 1 β3 ) 2 What is the sine of an angle that has a tangent of 1? 15
© Copyright 2026 Paperzz