Day 110 Notes - Applications of Factoring

Day 110 Lesson 7.6 Notes-TRICKY!! Solving by Factoring
l,.. . .H_W_:-pg_5_2_8#-2-3,-2-5,-32-,-33-,-36-,3-8---.
Don't forget to make the equation ::
. . ,o
1.
2m
2
-
- lr<t'l,. -
0
FIRST!! You always want your
-
/, - m ~
+4 •
7m =
'irn -
CY\
rv, '2- - l lm+10 =0
( rn-1o"')(m- •; =O
rn _10 =o
2. 3x
-1p
1
+_i - s= ~?~ +sf WflJ
-~
11fi'' -?x. -
Cfxz - q = 0
\C) - ''
_,o.-'
C)( )(''1_ ()= 0
q(x.,. i) C - ,) :. o
rn -1 = 0
se
3. , _
-j.x2
+
2
+<o-.,.2 7-'~
f\
a.x:_2 term positive!
\ x+l =a x-1-=-o
~
~ (>Z:-1 x=0
- 1'6x +
-+ ~ x
= 5x 2 - lx + 5
3-t2X 2 +llo't -1
o~ 7)( 2 +/Sx +'1_
(7x1-+ N~f IX H ~
7x ( x-+ i) IC x +2)
(7xt-,)( x+ d) ~ o
-
1~
I
I
1'1.t \~ 't
' 1¥
l
\
X -+J ~c
•
YOU TRY!
a.
3x 2
-
2x + 10 = x
+ 7x + 30
b. x 2
•
-
&r - 12 = -2x 2 -
4x - 8
Day 110 Lesson 7.6 Notes-Applications of Solving by Factoring
~e
Remember that the ~~-------~----:-::-~""T'" of a quadratic function represent when an object hits the
ground. Be sure to set your equation
2
and factor to solve. HINT: These alma
always have a GCF.
A ball is thrown straight up from the top of a 128 foot tall building w ith an initial speed of 32 feet per second .
The height o
all as a function of time can be modeled by the function
2
(t) -16t + 32t + 128. ow long will it take for the ball to hit the ground?
=
0
= _,·1c (
l-i. - :lt - ~ )
o : - /lt> ( l- C:.i)
( -c-+ '2..J
•
-l-l.f:Q
-l.--1.;J..: 0
~
t=tt
A ball is hit straight up in the air from the ground with an initial s eed
feet per second. The height of the
2
ball as a function of time can be modeled by the functio h(t) -16t + fOt. hen will the ball hit the ground?
=
0 : ~ICof:~1. -+ lPOt
-'It
-'{-4:;
O = -4t( /../t - 15.)
-l :o
.,
--
- "{
4t -
,s..=,o
~
fl5
'-It. ;)_5-__.
'~
w1
-:
3.,s
Secoods
A ball is thrown straight up from the t p of . 288 foot tall building
-an initial speed of 48 feet per second.
The height of the ball as a function of time can be modeled by the function h(t) = -16t2 + 48t + 288. When will
the ball land?